期刊文献+

基于改进SAM的高光谱影像混合像元分解算法研究

Research on Decomposition of Hyperspectral Image Mixed Pixel Based on Improved SAM Algorithm
下载PDF
导出
摘要 将传统遥感图像分类方法中的光谱角度制图法(Spectral Angle Mapping-SAM)加以变换,改进为一种符合全约束条件下的高光谱遥感图像的混合像元分解模型。新算法在端元丰度比例满足全约束的条件下,通过逼近的方法寻找一种端元丰度的比例组合,使测试光谱与目标光谱的广义夹角最小,从而认为该比例组合就是混合像元分解的结果。试验结合高光谱遥感模拟图像进行了分解实验,同时与最小二乘法做了比较,结果表明,新算法不仅严格地将各种端元组分的丰度值控制在0到1之间,而且其分解结果与模拟图像的实际情况也比较吻合,总体上新算法要优于最小二乘法。 It is an important prerequisite in sub-pixel mapping of hyperspectral remote sensing image,that mixed pixels must be effectively decomposed under all the constraints.In this paper,as one of the traditional image classification methods,the Spectral Angle Mapping method(SAM)was transformed and improved,so a new mixed pixel decomposition model which is under all constraints was proposed.Under the condition that the proportions of all endmembers meet all constraints,the new algorithm tries to find a kind of combination of the endmember proportion by approximation method,which can make the angle between test spectrum and target spectrum minimum,and the proportions of endmember are to be as the result of pixel decomposition.The new algorithm was tested on simulated hyperspectral data,and the result shows that the new algorithm works very well,the proportions of all endmembers not only are strictly controlled to be between 0 and 1,but also are more consistent with simulated hyperspectral data.In general,the new algorithm is superior to the least square method.
出处 《遥感信息》 CSCD 2011年第6期3-7,86,共6页 Remote Sensing Information
基金 国家科技支撑项目(2008BAC34B02) 科技部中奥合作项目(2008DFA21540) 973前期研究专项课题(2010CB434801) 国家自然科学基金项目(40971186)等基金资助项目
关键词 光谱角度制图法 像元分解 最小二乘法 高光谱图像 端元 SAM pixel unmixing least squares hyperspectral imagery endmember
  • 相关文献

参考文献11

  • 1TATEM A J,LEWIS H G,ATKINSON P M,et al.Super-resolution target identification from remotely sensed images using a hopfield neural network[J] .IEEE Transactions on Geoscience and Remote Sensing,2001,39 (4):781-796. 被引量:1
  • 2ATKINSON P M.Mapping sub-pixel boundaries from remotely sensed images[C] //nnovations in GIS 4.London:Taylor and Francis,1997:167-180. 被引量:1
  • 3Charles Ichoku,Arnon Karnieli.A review of mixture modeling techniques for sub-pixel land cover estimation[J] .Remote Sensing Reviews,1996(13):161-186. 被引量:1
  • 4VERHOEYEJ,WULF D.Land cover mapping at sub-pixel scales using linear optimization techniques[J] .Remote Sensing of Environment,2002,79 (1):96-104. 被引量:1
  • 5凌峰,张秋文,王乘,周建中.基于元胞自动机模型的遥感图像亚像元定位[J].中国图象图形学报,2005,10(7):916-921. 被引量:15
  • 6王旭红,郭建明,贾百俊,张宇坤.元胞自动机的遥感影像混合像元分类[J].测绘学报,2008,37(1):42-48. 被引量:14
  • 7吴波,张良培,李平湘.基于支撑向量回归的高光谱混合像元非线性分解[J].遥感学报,2006,10(3):312-318. 被引量:29
  • 8JU J C,KOLACZYK E D,GOPAL S.Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing[J] .Remote Sensing Environment,2003(84):550-560. 被引量:1
  • 9Small,C.Estimation of urban vegetation abundance by spectral mixture analysis[J] .International Journal of Remote Sensing,2001,22 (7):1305-1334. 被引量:1
  • 10Chang,C.-I,A.Plaza.A fast iterative algorithm for implementation of pixel purity index[J] .IEEE Geoscience and Remote Sensing Letters,2006,3(1):63-67. 被引量:1

二级参考文献41

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部