期刊文献+

基于微波辐射计SSM/I的海面风速反演算法研究及应用 被引量:2

Study on algorithms for retrieving sea surface wind speed and its application based on microwave radiometer SSM/I
原文传递
导出
摘要 海面风速是海洋环境的重要参数,微波辐射计是卫星监测海面风速的重要手段。通过微波辐射计SSM/I(Special Sensor Microwave/Imager)亮温与浮标实测风速建立的匹配数据集,利用人工神经网络构建海面风速反演模型。比较不同模型的反演效果,得出七通道单参数神经网络模型SANN(Single-parameter Artificial Neural Network)反演的效果和浮标实测风速较为接近,均方根误差RMSE(Root Mean Square Error)为1.40m/s。因此选择该模型反演全球的月平均风速,并将反演结果与NOAA产品风速比较。结果表明:两者在整体分布和纬度平均上非常接近,均方根误差为1.03m/s。可见,该算法用于海面风速反演还是可行的。研究亮点:提出用微波辐射计SSM/I刈辐型亮温与浮标实测数据进行匹配,可以减小人为误差。比较不同神经网络模型,发现七通道单参数模型效果要优于其他结构模型,然后选择该模型反演全球风速,效果较好,因此在不需要深究海面微波发射和传输的微观机制的前提下,可以为以后的微波辐射计反演海面风速提供参考。 The sea surface wind speed is an important parameter of marine environment and satellite microwave radiometer is an important tool to monitor this parameter. In this paper, a model for retrieving the sea surface wind speed is developed using the artificial neural network (ANN), through the data sets generated between the microwave radiometer SSM/I brightness temperatures and the in-situ buoy measurements. By comparing the retrieval results of different models, it is concluded that the result of the seven-channel SANN retrieval model is closer to the buoy measured wind speed with the root mean square error (RMSE) of 1.40m/s. Therefore, this model is chosen to retrieve the global monthly-average wind speed, and the retrieval results are compared with the NOAA products. The results show that, both are very close in the overall and latitude-average distribution with the RMSE of 1.03 m/s. It can be seen that the algorithm for the sea surface wind speed retrieval is feasible.
出处 《上海海洋大学学报》 CAS CSCD 北大核心 2012年第1期124-131,共8页 Journal of Shanghai Ocean University
基金 上海市高校选拔培养优秀青年教师科研专项基金(SSC10008)
关键词 SSM/I 反演 人工神经网络 应用 sea surface wind speed SSM/I retrieval artificial neural network application
  • 相关文献

参考文献19

  • 1DICKINSON S,BROWN R A. A study of near-surface winds in marine cyclones using multiple satellite sensors [ J ]. Journal of Applied Meteorology, 1996,35 ( 6 ) :769 - 781. 被引量:1
  • 2HSU C S, TIMOTHY L W, MORTON G, et al. Impact of scatterometer winds on hydrologic forcing and convective heating through surface divergence [ J ]. Monthly WeatherReview, 1997, 125(7): 1556-1576. 被引量:1
  • 3ATLAS R, HOFFMAN R N, LEIDNER S M, et al. The effects of marine winds from scatterometer data on weather analysis and forecasting [ J ]. Bulletin of the AmericanMeteorological Society,2001,82(9) :1965 -1990. 被引量:1
  • 4刘春霞,何溪澄.QuikSCAT散射计矢量风统计特征及南海大风遥感分析[J].热带气象学报,2003,19(B09):107-117. 被引量:62
  • 5李晓隼..一种卫星散射计资料的客观分析方法及台湾海峡周边海域海面风场季节特性研究[D].国家海洋局第三海洋研究所,2001:
  • 6冯倩..多传感器卫星海面风场遥感研究[D].中国海洋大学,2004:
  • 7HOLLINGER J P, PEIRCE J P, POE G A. SSM/I Insuument evaluation[ J]. Geoscience and Remote Sensing, 1990,28 (5) :781 -790. 被引量:1
  • 8WICK G A, BATES J J, GOTTSCHALL C C. Observation evidence of a wind direction signal in SSM/I passive microwave data[ J]. Geoscience and Remote Sensing, 2000,38(2) :823 -837. 被引量:1
  • 9THIRIA S, MEJIA C, BADRAN F, et al. A neural network approach for modeling nonlinear transfer function : application for wind retrieval from spaceborn scatterometer data [ J ].Journal Geophysical Research, 1993,88 (4) :22827 - 22841. 被引量:1
  • 10WENTZ F J. A well calibrated ocean algorithm for SSM/I [ J ]. Journal Geophysical Research, 1997,102 (4) : 8703 - 8708. 被引量:1

二级参考文献20

  • 1齐义泉,施平,毛庆文.南海海面风速季节特征的卫星遥感分析[J].热带海洋,1996,15(1):68-73. 被引量:24
  • 2SCHMULLIUS C C. Monitoring Siberian forecast and agriculture with the ERS-1 wind scatterometer[J]. IEEE Trans Geosci Remote Sens, 1997, 35: 1364-1366. 被引量:1
  • 3ISAKSEN L, STOFFELEN A. ERS scatterometer wind data impact on ECWMF's tropical cyclone forecasts[J]. IEEE Trans Geosci Sens. 2000. 38: 1885-1892. 被引量:1
  • 4ATLAS R, BLOOM S C, HOFFMAN R N, at el. Geophysical validation of NSCAT winds using atmospheric data and analyses[J], dGeophys Res, 1999, 104:11405-11424. 被引量:1
  • 5CHANG C P, LIN S C, LIOU C S, et al. Qn experiment using NSCAT winds in numerical predication of tropical mesoscale rainfall systems under the influence of terrain[J]. Gophys Res Lett, 1999, 26:311-314. 被引量:1
  • 6CHU P C, LU S, LIU W T. Uncertainty of South China prediction using NSCAT and NCEP winds during tropical storm Emie 1996[J]. J Uephys Res, 1999, 104: 11273-11289. 被引量:1
  • 7LIU W T, TANG W, HUH. Spacebome sensors observe various effects of anomalous winds on sea surface tempetmures in the Pacific Ocean[J]. Eos TransAGU. 1998. 79: 249-252. 被引量:1
  • 8FIGA J, STOFFELEN A. On the Assimilation of Ku-band scatterometer winds for weather analysis and forecasting[J].IEEE Tram Geosci Remote Sena, 2000, 38: 1893-1902. 被引量:1
  • 9LIU W T, HU J, YUEH $. Interplay between wind and rain observed in hurricane floyd[J]. Eos Trar~ AGU, 2000, 81:253-257,. 被引量:1
  • 10LIU W T, XIE X, POLITO P S, at el. Atmosphere manifestation of tropical instability wave observed by QuikSCAT and tropical rain measuring missions[J]. Geophys Res Lett, 200, 27: 2545-2548. 被引量:1

共引文献61

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部