期刊文献+

声纹识别中合成语音的鲁棒性 被引量:3

Robust Speaker Recognition against Synthetic Speech
原文传递
导出
摘要 随着以隐马尔科夫模型为基础的语音合成技术的发展,冒认者很容易利用该技术生成具有目标说话人特性的合成语音,这对现有的声纹识别系统构成巨大威胁.针对此问题,文中从统计学的角度分析自然语音与合成语音在实倒谱上的区别,并提出对合成语音具有鲁棒性的声纹识别系统.实验结果初步表明,相比于传统的声纹识别系统,在对自然语音的等错误率不变的情况下,该系统对合成语音的错误接受率由99.2%降为0. With the development of the hidden raarkov model (HMM) based speech synthesis technology, it is easy for impostors to produce synthetic speech with the specific speakerb characteristics, which becomes an enormous threat to the existing speaker recognition system. In this paper, the difference between natural speech and synthetic speech is investigated on the real part of cepstrum. And a speaker recognition system is proposed which is robust against synthetic speech. Experimental results demonstrate that the false accept rate (FAR) for synthetic speech is zero in the proposed system, while that of the existing speaker recognition system is 99. 2% with the equal error rate (EER) for natural speech unchanged.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期743-747,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60970161) 中央高校基本科研业务费专项项目(No.XD2100060001)资助
关键词 声纹识别 合成语音 实倒谱 Speaker Recognition, Synthetic Speech, Real Part of Cepstrum
  • 相关文献

参考文献8

  • 1Reynolds D A, Quatieri T F, Dunn R B. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, 2000, 10( 1/2/3 ) : 19 -41. 被引量:1
  • 2Campbell W M, Campbell J P, Reynolds D A, et al. Support Vec- tor Machines for Speaker and Language Recognition. Computer Speech and Language, 2006, 20(2/3): 210- 229. 被引量:1
  • 3Solomonoff A, Quil.len C, Campbell W M. Channel Compensation for SVM Speaker Recognition [ EB/OL]. [ 2004-03-31 ]. http:// www. 11. mit. edu/mission/communications, ist. publications. 04053/ _Solomonff. pdf. 被引量:1
  • 4Kenny P, Ouellet P, Dehak N, et al. A Study of Inter-Speaker Var- iability in Speaker Verification. IEEE Trans on Audio, Speech and Language Processing, 2008, 16 ( 5 ) : 980 - 988. 被引量:1
  • 5Tokuda K, Yoshimura T, Masuko T, et al. Speech Parameter Gen- eration Algorithms for HMM-Based Speech Synthesis// Proc of the IEEE International Conference on Acoustics, Speech and Signal Pro- cessing. Istanbul, Turkey, 2000:1315 - 1318. 被引量:1
  • 6Masuko T, Tokuda K, Tobayashi T. Imposture Using Synthetic Speech against Speaker Verification Based on Spectrum and Pitch// Proc of the 6th International Conference on Spoken Language Pro- cessing. Beijing, China, 2000 : 302 - 305. 被引量:1
  • 7Jin Qin, Toth A R, Black A W, et al. Is Voice Transformation a Threat to Speaker Identification.'? // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA, 2008 : 4845 - 4848. 被引量:1
  • 8Kawahara H, Masuda-Katsuse I, de Cheveigne A. Restructuring Speech Representations Using Pitch-Adaptive Time-FrequencySmoothing and an Instantaneous-Frequency-Based F0 Extraction: Possible Role of a Repetitive Structure in Sounds. Speech Communi- cation, 1999, 27(3/4) : 187 -207. 被引量:1

同被引文献16

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部