期刊文献+

秩1修正矩阵特征值问题的推广及其应用(英文)

An extension eigenvalues of rank-one update matrix and its applications
下载PDF
导出
摘要 本文给出了秩1修正矩阵特征值问题推广的新证明,证明过程主要应用了一个行列恒等式.在此基础上,把秩1修正矩阵的特征值问题推广到块特征值问题.最后给出一个应用说明结论的重要性. We prove a spectral perturbation theorem for an extension eigenvalues of rank-one update matrix of special structure.The main idea behind our proof is from the simple relation between the determinants for a matrix and this result.Furthermore,we extent this theorem to the block eigenvalues problem.At last one application of the result is given to illustrate the usefulness of the theorem.
出处 《枣庄学院学报》 2011年第5期29-32,共4页 Journal of Zaozhuang University
关键词 秩1更新 行列式 rank-one update determinant spectrum
  • 相关文献

参考文献4

  • 1Jiu D,Zhou A H.Eigenvalues of rank-one updated matrix with some applications[].Journal of Applied Mathematics.2007 被引量:1
  • 2Dennis J E,Traub J F,Weber R P.On the matrix polynomial,lambda-matrix and block eigenvalue problem[].TechRep-Computer Science DepartmentCornell UnivIthacaNY and Carnegie-Mellon UnivPitsburghPA.1971 被引量:1
  • 3Hertel,T W.Global Trade Analysis:Modeling and Applications[]..1997 被引量:1
  • 4R.L. Soto,O. Rojo.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[].Linear Algebra and Its Applications.2006 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部