期刊文献+

本体辅助的约束空间关联规则挖掘方法 被引量:3

Mining Method of Ontology Accessorial Constrained Geospatial Association Rule
下载PDF
导出
摘要 提出利用本体辅助进行基于约束的空间关联规则挖掘,引入本体所表达的层次结构和概念属性合理地解释用户定义的约束,包括对实验项的修剪约束和根据层次体系得到的层次约束。通过优化挖掘的实验数据提高挖掘的效率和优化挖掘结果,为解决数据巨大而知识不足的困境提供了可供借鉴的方法。以河南省的统计年鉴和交通数据为基础数据,分析和挖掘经济与交通之间的空间关联关系,有效地验证了方法的性能。 A new way of how the ontology theory being used in assisting constrained geospatial association rules mining was proposed. Constraints defined by user include two types, prune constraints and delaminate (ab- stract) constraints, which are interpreted logically by using hiberarchy about the domain and property of con ception represented by ontology. With the optimization of experiment dataset, the mining efficiency is enhanced and the mined results is optimized, which provide a viable means to figure out the problem of having huge data but lacking useful knowledge. The statistic yearbook and traffic data of Henan province was taken as real data and the performance was validated by analyzing and mining the association rules between economy and traffic.
出处 《测绘科学技术学报》 北大核心 2011年第6期458-462,共5页 Journal of Geomatics Science and Technology
基金 国家自然科学基金资助项目(40871183 41140012)
关键词 数据挖掘 空间关联规则 本体辅助 约束 数据清理 data mining geospatial association rules ontology-assisted constraints data clearing
  • 相关文献

参考文献10

二级参考文献25

  • 1陈军,赵仁亮,乔朝飞.基于Voronoi图的GIS空间分析研究[J].武汉大学学报(信息科学版),2003,28(S1):32-37. 被引量:83
  • 2傅炜.黄土丘陵沟壑区土壤侵蚀专家系统试验研究[J].自然灾害学报,1993,2(1):62-71. 被引量:9
  • 3黄添强,秦小麟,叶水生,包磊.一种新的空间多维关联规则模型与算法[J].南京航空航天大学学报,2005,37(3):301-306. 被引量:4
  • 4杨晓梅,蓝荣钦,杨松.基于S-域的空间关联规则挖掘研究[J].测绘科学技术学报,2007,24(1):10-13. 被引量:3
  • 5Malerba D, Lisi F A, Appice A, et al. Mining Spatial Association Rules in Census Data: a Relational Approach[C]. The ECML/PKDD'02 Workshop on Mining Official Data, University Printing House, Helsinki, 2002. 被引量:1
  • 6Rinzillo S, Turini F. Knowledge Discovery from Spatial Transactions[J]. Journal of Intelligent Information Systems Archive, 2007, 28(1) :1-22. 被引量:1
  • 7Koperski K, Han J. Discovery of Spatial Assoeia tion Rules in Geographic Information Databases [A]. The 4th International Symposium on Large Spatial Data Bases, Maine, 1995. 被引量:1
  • 8Morimoto Y. Mining Frequent Neighboring Class Sets in Spatial Databases[C]. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA , USA, 2001. 被引量:1
  • 9Gold C M. The Meaning of “Neighbour”[J]. Lecture Notes in Computing Science ,1992(39): 220- 235. 被引量:1
  • 10[1]Fu Y, Hah J. Meta-rule-guided Mining of Association Rules in Relational Databases. First International Workshop on Integration of Knowledge Discovery with Deductive and Object-oriented Databases (KDOD'95) [C], Singapore, 1995:39-46 被引量:1

共引文献59

同被引文献35

  • 1易国洪,章瑾.基于本体的数据挖掘方法研究[J].计算机与数字工程,2007,35(7):42-44. 被引量:2
  • 2李善平,尹奇韡,胡玉杰,郭鸣,付相君.本体论研究综述[J].计算机研究与发展,2004,41(7):1041-1052. 被引量:274
  • 3杨立,左春,王裕国.面向服务的知识发现体系结构研究与实现[J].计算机学报,2005,28(4):445-457. 被引量:16
  • 4国家突发公共事件总体应急预案[J].中国防汛抗旱,2006,16(1):16-19. 被引量:14
  • 5陈霞,魏玲玲,邱桃荣,刘萍.基于本体论的关联规则的挖掘[J].计算机与数字工程,2007,35(2):32-34. 被引量:4
  • 6BOGORNY V,KUIJPERS B, ALVARES L O. Reducing Unin- teresting Spatial Association Rules in Geographic Databases U- sing Background Knowledge: A Summary of Results [ J ]. Int J Geogr Inf Sci, 2008,22 (4) : 361-386. 被引量:1
  • 7PEI J, HAN J, MAO R. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets[ C]//Pmce.edings of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.USA, New York : ACM Press,2000:21-30. 被引量:1
  • 8ZAKI M, CHING JUI H. CHARM:An Efficient Algorithm for Closed Itemset Mining [ C ]//Proceedings of the Second SIAM International Conference on Data Mining. USA, Philadelphia Press, 2002 : 457-473. 被引量:1
  • 9ZAKI M J, OGIHARA M. Theoretical Foundations of Associa- tion Rules[ C ]//3rd SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. USA, New York : ACM Press ,2002 : 1-8. 被引量:1
  • 10PASQUIER N, BASTIDE Y, TAOUIL R, et al. Discovering Fre- quent Closed Itemsets for Association Rules [ C ] ,//Proceedings of the Seventh International Conference on Database Theory. Berlin : Springer, 1999 : 398-416. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部