摘要
为了克服BP神经网络的易陷入局部极小、收敛速度慢等缺点,利用非线性最小二乘法对其进行了改进.改进后的BP 神经网络的收敛速度提高了1 ~2 个数量级.同时,利用压阻式压差传感器测得了水平管内油气水多相流压差信号,根据分形理论中的重构相空间法提取出压差信号的特征向量,再将特征向量送入改进的BP 神经网络中,从而完成对油气水多相流流型的智能识别.结果证明,改进的BP神经网络能有效地自动识别出油气水多相流的流型.
BP (back propagation) neural network encounters local minimum, slow convergence speed and convergence instability. The shortcomings can be overcome by application of the nonlinear square method. The convergency speed of the modified BP neural network is increased by one or two orders of magnitude. Pressure signals of oil gas water multiphase flow are measured with a piezo resistance pressure transducer. The characteristic vectors are extracted by using the reconstructing phase space method in fractal theory. The characteristic vectors are then fed into the modified BP neural network which leads to the intelligent identification of flow regime of oil gas water multiphase flow. Experimental results shows that the modified BP neural network can effectively and automatically send out the imformation of flow regime.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2000年第1期22-25,共4页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金!59236131
关键词
多相流
流型
模式识别
BP神经网络
智能识别
multiphase flow
flow regime
nonlinear least squares
neural network
pattern identification