期刊文献+

基于信号稀疏表示的信源数目和DOA联合估计算法 被引量:1

Joint Sources Number Detection and DOA Estimation Based on Signal Sparse Representation
下载PDF
导出
摘要 波达方向估计是阵列信号处理的一个重要问题。基于阵列信号的联合稀疏表示模型,首先根据阵列结构建立过完备原子库,然后将阵列接收数据分解到最佳原子上,实现了空域信号DOA的高分辨估计;通过将阵列接收数据进行奇异值分解和采用粗略搜索与精细估计相结合两种方法提高了运算速度。相对于传统算法,本文算法不需要已知信源数目的先验信息,同时可以处理相干信号,并且在少量快拍数下有明显的优势。最后通过仿真实验验证了所提出方法的正确性和有效性。 Estimation of arrival is an important issue in array signal processing.Based on the model of joint-sparse representation of array signals,an overcomplete atom dictionary is established according to the array geometry and then a best matched atom can be found to obtain high-resolution estimation of DOA by sparse decomposition of the array output.The methods of singular value decomposition(SVD) of the data matrix and coarse searching followed with fine estimation reduce the computational complexity.Compared with traditional algorithms,this new algorithm can handle highly correlated sources,does not require the number of sources in advance and exhibits obvious advantages when the number of signal snapshots is small.Simulation results indicate the correctness and effectiveness of the proposed algorithm.
出处 《信息工程大学学报》 2011年第6期713-718,共6页 Journal of Information Engineering University
基金 科研基金资助项目
关键词 稀疏表示 DOA估计 压缩感知 过完备字典 奇异值分解 sparse representation direction-of-arrival estimation compressive sensing overcomplete dictionary SVD
  • 相关文献

参考文献13

  • 1Schmidi R O. Multiple emitter location and signal parameter estimation[ ]]. IEEE Trans. on Advanced Packaging, 1986, 34 ( 3 ) : 243-258. 被引量:1
  • 2Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[ J ]. IEEE Trans. on Acoustics, speech and Signal Processing, 1989, 37 (7) : 984-995. 被引量:1
  • 3Krim H, Viberg M. Two decades of array signal processing research[ J ]. IEEE Signal Processing Magazine, 1996, 13 (4) : 67- 94. 被引量:1
  • 4Shan T, Wax M, Kailath T K. On spatial smoothing for direction of arrival estimation of coherent signals[ J ]. IEEE Trans, 1985, ASSP-33(4) : 806-811. 被引量:1
  • 5Williams R T. An improved spatial smoothing technique for bearing estimation on a muhipath environment[ J]. IEEE Trans, 1989, ASSP-236 (4) : 425-431. 被引量:1
  • 6Donoho D L. Compressed sensing[ J]. IEEE Trans. on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 7Candes E, Tao T. Near optimal signal recovery from random projections[ J ]. Universal encoding strategies, 2006, 52 (12) : 5406 -5425. 被引量:1
  • 8Candes E. Compressive sampling[ C]//Proceedings of the International Congress of Mathematicians, Madrid, Spain. 2006, 3: 1433-1452. 被引量:1
  • 9Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43( 1 ) : 129-159. 被引量:1
  • 10Cotter S F, Rao B D, Kjersti Engan. Sparse solutions to linear inverse problems with multiple measurement vectors [ C ]//Signal Processing, IEEE Transactions on. 2005: 2477-2488. 被引量:1

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部