期刊文献+

一种基于内壳向量的SVM增量式学习算法 被引量:2

A SVM incremental learning algorithm based on inner hull vectors
下载PDF
导出
摘要 本文针对支持向量机难以快速有效地进行增量式学习的问题,提出了一种基于内壳向量的支持向量机增量式学习算法。算法通过线性规划运算求得最可能包含支持向量的壳向量和内壳向量集合,在保证分类精度的前提下最大程度地缩小训练集规模,进而在新的训练集中快速训练支持向量机。将该算法应用于公开数据及低空飞行声目标分类识别,结果表明,新算法缩短了训练时间,且比现有其他算法具备更高的分类精度和稳定性。 We present an algorithm based on inner hull vectors for SVM incremental learning in this paper. In our algorithm, a set of hull vectors and inner hull vectors which most likely to become the support vectors are extracted from the training samples by using the linear programming, the obtained hull vectors and inner hull vectors are conjoined as a part of updated training samples which is smaller than the original training samples, then using the updated training samples to reconstruct the SVM. The proposed algorithm is tested on public databases and low altitude tlying acoustic targets data. Experiment results show that the proposed method is more precise and stable than the other methods and also expedite the SVM training.
出处 《电路与系统学报》 CSCD 北大核心 2011年第6期109-113,共5页 Journal of Circuits and Systems
基金 国家自然科学基金(60872113)
关键词 支持向量机 增量学习 壳向量 内壳向量 support vector machine incremental learning hull vector inner hull vecltors
  • 相关文献

参考文献12

二级参考文献62

共引文献127

同被引文献22

  • 1李忠伟,张健沛,杨静.基于支持向量机的增量学习算法研究[J].哈尔滨工程大学学报,2005,26(5):643-646. 被引量:10
  • 2王珏,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006. 被引量:34
  • 3Vapnik V.The Nature of Statistical Learning Theory [ M ]. New York : Springer Verlag, 1995. 被引量:1
  • 4Syed N,Liu H, Sung K. Incremental Learning with Support Vector Machines. [C]//Proceedings of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence. Stockholm ,Sweden: Morgan Kaufmann , 1999. 被引量:1
  • 5Ralaivola L,dAlch-Buc F.Incremental Support Vector Machine Learning: A Local Approach [ C ]//Proc.of ICANN, 01. Vienna ,Austria : Springer,2001. 被引量:1
  • 6Gert C,Tomaso P.Incremental and Decremental Support Vector Machine Learning [C]//Adances in Neural Information Processing Systems (NIPS*2000).Cambridge, MA:MIT Press, 2001. 被引量:1
  • 7周培德.计算几何-算法分析与设计[M].北京:清华大学出版社,2003. 被引量:1
  • 8Zhang L,Zhou W D,Jiao L C. Pre-extracting Support Vectors for Support Vector Machine [C ]//Proceeding of ICSP2000.Beijing:IEEE Press, 2000. 被引量:1
  • 9Theodorids S,Koutroumbas K. Pattern Recognition,Third Edition [ M ].Beijing: China Machine Press, 2006. 被引量:1
  • 10David A, Lerner B. Support vector machine - based image classification for genetic syndrome diagnosis [J]. Pattern Recognition Letters ,2005,26 (8) : 1029 - 1038. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部