期刊文献+

耦合的Harry-Dym方程的对称约化 被引量:1

Symmetry reduction for the coupled Harry-Dym equations
下载PDF
导出
摘要 目的研究耦合的Harry-Dym方程的对称约化。方法 Steinberg提出的对称方法。结果得到耦合的Harry-Dym方程所允许的对称和相应的常微分方程组。结论将耦合的Harry-Dym方程转化为常微分方程组。 Aim To study the symmetry reduction for the coupled Harry-Dym equations. Methods Steinberg's similarity method. Results The symmetry and the corresponding system of ordinary differential equations are obtained. Conclusion The coupled Harry-Dym equations can be reduced to the system of ordinary differential equations.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期961-963,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11101332) 河南省自然科学基金资助项目(2007140020)
关键词 耦合的Harry—Dym方程 对称约化 Fr6chet导数 相似解 the coupled Harry-Dym equations symmetry reduction Frechet derivatives similarity solutions
  • 相关文献

参考文献7

  • 1BLUMAN G W, KUMEI S. Symmetries and Differential Equations [ M ]. New York : Springer-Verlag, 1989. 被引量:1
  • 2OLVER P J. Application of Lie Groups to Differntial Equation [ M ]. 2nd ed. Graduate Texts in Mathematics, New York: Springer, 1993. 被引量:1
  • 3CLARKSON P A, KRUSKAL M D. New similarity reductions of the Boussinesq equation [ J]. J Math Phys, 1989, 30:2201-2213. 被引量:1
  • 4CLARKSON P A, KRUSKAL M D. Nonclassical symmetry reductions of the Boussinesq equation [ J ]. Chaos, Solitons and Fractals, 1995, 5 : 2261-389. 被引量:1
  • 5STEINBERG S. Symmetry methods in differntial equtions [ R ]. Technical Report No. 367, University of New Mexico, USA. 1997. 被引量:1
  • 6MOUSSA M H, MOUSSA M. Similarity solutions to nonlinear partial differential equation of physical phenomena reprensented by the Zakharov-Kuznetsov eqution [ J]. International Journal of Engineering Science, 2001, 39 : 1565-1575. 被引量:1
  • 7MOUSSA M H M, REHAB M. EI Shikh. Similarity reduction and Similarity solutions of Zabolotskay-Khoklov eqution with dissipative term via symmetry method [ J]. Physica A, 2006, 371 : 325-335. 被引量:1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部