摘要
在一个不规则网络上离散拉普拉斯算子的差分格式,不但能满足相容性及极值原理,而且还具有误差极小性质。本文用它求解非稳定流地下水运动方程,并证明了算法稳定性及收敛性;还用这种方法对大连水师营地区地下水运动状况进行了数值模拟,且取得了较好的效果,此法也可在其它类似计算中推广应用。
The paper gives disperse pattern of Laplace functor under in-uniform grid, which fulfills acceptance character and error minimum theory, extremes value principle. The paper slove unsteady groundwater flow equation with the mentioned disperse pattern and the results show its stabilize astringency. The method was applied to manipulate groundwater in Shuishiying Area, Dalian and got satisfied results. This method can also be applied in other relevant fields.
出处
《水文》
CSCD
北大核心
2000年第1期19-22,共4页
Journal of China Hydrology
关键词
数值模拟
边界点
地下水
地下水运动
水师营地区
numerical simulation
boundary node
disperse pattern
calculate grid
groundwater