期刊文献+

单个控制场下开放量子系统的状态转移(英文)

States transfer of open quantum systems with single control field
下载PDF
导出
摘要 研究了开放量子系统的状态转移问题.利用刘维尔超算符将其矩阵动力学模型转换为向量形式.给定一个耗散的量子系统的动力学模型,在一个随时变化的外部控制场中,以系统状态和目标状态的密度矩阵的误差平方作为性能指标,推导出改进的状态转移最优控制律.在数值仿真实验中,我们研究了一个热浴中的自旋1/2粒子系统在单个外部控制场作用下的动力学特性.在所提出的最优控制作用下,分别选择本征态、纯态和混合态作为系统的初始状态和目标状态.对此系统中状态转移的实验结果进行了性能对比分析. Dynamical model of open quantum systems in a matrix form is transformed into the model in a vector form using Liouville super-operator.Given a dynamical model of a dissipative quantum system in the presence of a time-dependent external control field,we achieve an improved optimal control law with the squared error between density matrices of system state and target state as the performance index.The states transfer experiment on a spin 1/2 particle system is carried out.Under the proposed optimal control,eigenstates,pure states,and mixed states are taken as initial and target states of the system,respectively.Detailed comparative analyses are given.
作者 杨洁 丛爽 YANG Jie;CONG Shuang(Department of Automation,University orscience and Technology of China,Hefei 230027,China)
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2012年第1期17-26,共10页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 Supported by the National Key Basic Research Program(2009CB929601) the National Science Foundation of China(61074050) the undergraduate innovation fund of USTC
关键词 开放量子系统 最优控制 状态转移 自旋1/2粒子系统 open quantum systems; optimal control; state transfer; spin 1/2 particle system
  • 相关文献

参考文献17

  • 1Zwolak M P. Dynamics and simulation of open quantum systems[ D ]. California Institute of Technology, June 2007. 被引量:1
  • 2Ferrante A, Pavon M, Raccanelli G. Control of quantum systems using model-based feedback strategies [ C ] // 15th International Symposium on Mathematical Theory of Networks and Systems. Indiana, MA6, 2002 : 1-9. 被引量:1
  • 3Ferrante A, Pavon M, Raccanelli G. Driving the propagator of a spin system : A feedback approach [ C ]//Proceedings of the 41 th IEEE Conference on Decision and Control. Las Vegas, 2002, 1 (11) : 46-50. 被引量:1
  • 4Hekman K A, Singhose W E. A feedback control system for suppressing crane oscillations with on-off motors[ J]. International Journal of Control, Automation, and Systems, 2007, 5 (3) : 223-233. 被引量:1
  • 5Roloff R, Wenin M, Pritz W. Optimal control for open quantum systems: qubits and quantum gates[ J ]. Journal of Computational and Theoretical Nanoscienee, 2009, 6 ( 8 ) : 1837-1863. 被引量:1
  • 6Wang Q F. Quantum optimal control of nuclei in the presence of perturbation in electric field [ J ]. IEEE transactions on Automation Control, 2009, 3(9): 1175-1182. 被引量:1
  • 7Mirrahimi M, Rouehon P, Turinici G. Lyapunov control of bilinear Sehrodinger equations[ J ]. Automatiea, 2005, 41 ( 11 ) : 1987-1994. 被引量:1
  • 8Kuang S, Cong S. Lyapunov control methods of closed quantum systems[ J]. Automatica, 2008, 44 (1) : 98-108. 被引量:1
  • 9D'Alessandro D, Dahleh M. Optimal control of two-level quantum systems[ J]. IEEE Transactions on Automation Control, 2001, 46 (6) : 866-876. 被引量:1
  • 10Rice S A, Zhao M. Optical control of molecular dynamics[ M]. New York:Wiley, 2000. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部