期刊文献+

结合图像特征和几何特征的级联图像匹配方法

Cascade Object Matching by Combining Image Feature and Geometry Feature
下载PDF
导出
摘要 提出了一种多特征级联目标匹配算法(MFCM)。在先前的研究中提出的基于几何特征的匹配方法复杂度普遍较高,需要改进。MFCM算法首先使用图像特征为每一个特征点建立潜在匹配集,然后进行两级匹配:第一级匹配采用分治思想,利用几何特征建立匹配结果集,并应用投票机制来确保匹配的稳定性;第二级匹配在模板点集和匹配结果集之间建立对应关系。新算法有效提高了几何匹配方法的效率,同时保持了较高的匹配正确率。实验结果表明,MFCM算法可以有效处理大数据量的目标匹配问题。 A new multi-feature cascade object matching (MFCM) method was proposed. Some previous works provided some object matching methods based on geometry feature. However, the complexity of these methods was too high. The key idea the MFCM method is that using the image feature to build the potential matching set for each point and then do the matching process twice: firstly, using the geometry feature to find the exactly corresponding point and add them to the "Result Set", through the geometry matching process, a vote mechanism was used to ensure the correctness; secondly, building the correspondence between the model point set and result set. The new method has both higher efficiency and correction than other geometry method. The results of experiments show that this new method can deal with the object matching problem with large amount of data.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第1期113-116,共4页 Journal of System Simulation
基金 国家自然科学基金(60970094) 湖南省自然科学基金项目(S2010J504B) 国防科学技术大学预研项目(JC09-06-01)
关键词 MFCM 目标匹配 几何特征 图像特征 MFCM object matching geometry feature image feature
  • 相关文献

参考文献8

  • 1Jiang Hao, Drew M S, Li Z. Matching by Linear Programming and Successive Convexification [C]//IEEE Trans. PAMI, 29, 2007. USA: IEEE, 2007. 被引量:1
  • 2Nister D, Stewenius H. Scalable Recognition with a Vocabulary Tree [C]// IEEE Computer Society Conference on CVPR, 2006. USA: IEEE, 2006:2161-2168. 被引量:1
  • 3Jiang Hao, Yu S X. Linear Solution to Scale and Rotation Invariant Object Matching [C]//IEEE Computer Society Conference on CVPR, 2009. USA: IEEE, 2009:2474-2481. 被引量:1
  • 4Chum O, Matas J. Optimal Randomized Ransac [C]//IEEE Trans. PAMI. USA: IEEE, 2008, 30(8): 1472-1482. 被引量:1
  • 5Ducheme O, Bach F, Kweon I, Ponce M J. A Tensor-based Algorithm for High-order Graph Matching [C]// IEEE Computer Society Conference on CVPR, 2009. USA: IEEE, 2009: 1980-1987. 被引量:1
  • 6Cho M, Lee J, Lee K M. Reweighted Random Walks for Graph Matching [J]. Lecture Notes in Computer Science, 2010, 6315: 462-505. 被引量:1
  • 7Li Hongsheng, Kin E, Huang Xiaolei, He L. Object Matching with a Locally Affine-invariant Constraint [C]// IEEE Computer Society Conference on CVPR, 2010. USA: IEEE, 2010:1641- 1648. 被引量:1
  • 8Kleinberg J. Authoritative Sources in a Hyperlinked Environment [J]. Journal of the ACM (S0004-5411), 1999, 46(5): 112-116. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部