期刊文献+

蜂群—蚁群自适应优化算法 被引量:11

Adaptive bee-ant colony optimization
下载PDF
导出
摘要 为了解决蚁群算法在求解连续函数优化问题时,存在局部搜索能力较差的缺陷,提出一种新颖的自适应蜂群—蚁群优化算法。新算法在蚁群优化算法的基础上,设计了一种参数q的自适应机制,进而减少了参数个数,提高了其鲁棒性;根据蜂群算法基本思想,利用雇佣蜂和观察蜂设计了高效的局部搜索算子,从而提升了算法的局部能力。针对五个标准测试函数的仿真实验结果表明:与蚁群优化算法相比,新算法的全局和局部寻优能力均得到了极大的提升。 This paper proposed a novel colony-ant colony optimization algorithm for continuous function optimization problems.The new algorithm was based on ant colony optimization algorithm.There were two improvements in the new algorithm.Firstly,it devised the adaptive mechanism for parameter q to reduce the parameters' number and improved the robustness of the new algorithm.Secondly,an efficient local search operator,which used employee bees and observed bees in the artificial bee colony,was devised to enhance the local searching capacity.The simulation results for five benchmark functions show that: compared with those of ant colony optimization,the global and local searching capability of colony-ant colony optimization has been greatly improved.
作者 何宗耀 王翔
出处 《计算机应用研究》 CSCD 北大核心 2012年第1期130-134,共5页 Application Research of Computers
关键词 优化问题 蚁群优化 人工蜂群算法 optimization problem ant colony optimization(ACO) artificial bee colony algorithm
  • 相关文献

参考文献8

  • 1BULLNHEIMER B, HARTL R F, STRAUSS C. A new rank based version of the ant system : a computational study [ R ]. Vienna : WU Vienna Universing of Economics and Business, 1997.25- 38. 被引量:1
  • 2STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems,2000,16(9) : 889-914. 被引量:1
  • 3DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997,1 (1): 53-66. 被引量:1
  • 4BILCHEV G, PARMEE I. The ant colony metaphor for searching continuous design spaces [ C ]//Lecture Notes in Compute/Science, vol 993. Berlin : Springer-Verlag, 1995 : 25- 39. 被引量:1
  • 5MONMARCHE N, VENTURINI G, SLIMANE M. On how Pachycondyla apicalis ants suggest a new search algorithm[J]. Future Generation Computer Systems,2000,16 (9) : 937- 946. 被引量:1
  • 6DREO J, SIARRY P. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[C]//Lectare Notes in Computer Science, vol 2463. Berlin: Springer-Verlag,2002 : 216-221. 被引量:1
  • 7SOCHA K, DORIGO M. Ant colony optimization for continuous domains[ J]. European Journal of Operational Research, 2008, 185(3) : 1155-1173. 被引量:1
  • 8KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm [J]. Applied Soft Computing, 2008,8(1): 687-697. 被引量:1

同被引文献129

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部