期刊文献+

基于EREF的PSO-AdaBoost训练算法 被引量:4

PSO-AdaBoost training algorithm based on EREF
下载PDF
导出
摘要 针对基于PSO的AdaBoost算法(PSO-AdaBoost)的不足,分析了传统目标函数不能适应多个弱分类器拥有相同最小错误率时弱分类器的选择问题,提出了解决这一问题的有效方法。新方法使用特征值和阈值的绝对值差衡量错分样本的错误程度,结合相对熵理论形成PSO算法的适应度函数,使其根据错分样本的错误程度挑选最佳弱分类器。实验结果表明,所提算法具有较高的检测率和较小的泛化错误。 Focusing on the disadvantage of the AdaBoost algorithm based on PSO,this paper mainly analyzed the issue that the traditional target function could not adapt to the problem of weak classifiers selection when they had the same minimum error rate and a new method was advanced to avoid the problem.The new method used the absolute difference between the threshold and feature to measure the extent of misclassification and combined with the relative entropy principle as the fitness function.In this way,the new fitness function could select the best weak classifiers more accuracy.Experimental results indicate that the method can achieve both better performance and less generalization error.
出处 《计算机应用研究》 CSCD 北大核心 2012年第1期127-129,共3页 Application Research of Computers
基金 甘肃省教育厅研究生导师基金资助项目(1014ZTC089) 甘肃省财政厅科研项目(0914ZTB148)
关键词 人脸检测 粒子群优化 ADABOOST算法 相对熵 训练算法 face detection particle swarm optimization(PSO) AdaBoost algorithm relative entropy training algorithm
  • 相关文献

参考文献8

  • 1YANG M H, KRIEGMAN D, AHUJA N. Detecting faces in images: a survey [J]. IEEE Trans on PAMI,2002,24(1):34-58. 被引量:1
  • 2MORENCYA L P, SIDNERB C,LEEC C,et al. Head gestures for perceptual interfaces:the role of context in improving recognition [ J ]. Artificial Intelligence,2007, 171 (8) :568- 585. 被引量:1
  • 3BEVILANCQUA V,FILOGRANO G,MASTRONARDI G. Face Detection by means of skin detection [ C ]//Lecture Notes in Computer Science, vol 5227. Berlin : Springer-Verlag,2008 : 1210-1220. 被引量:1
  • 4PALIY I. Face detection using Haar-like features cascade and convolutional neural network [ C ]//Prec of International Conference on Modem Problems of Radio Engineering, Telecommunications and Computer Science. 2008 : 375- 377. 被引量:1
  • 5FREUND Y, SCHAPIRE R. A decision theoretic generalization of online learning and application to boosting[ J ]. Journal of Computer and System Science, 1997,55 (1) : 119-139. 被引量:1
  • 6MOHEMMED A W, ZHANG Meng-jie, JOHNSTON M. Particle swarm optimization based AdaBoost for face detection [ C ]//Proc of IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2009 : 2494- 2501. 被引量:1
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]// Proc of the 4th IEEE International Conference on Neural Networks. 1995 : 1942-1948. 被引量:1
  • 8钱志明,徐丹.一种Adaboost快速训练算法[J].计算机工程,2009,35(20):187-188. 被引量:8

二级参考文献5

  • 1Sung Kahkay, Poggio T. Example-based Learning for View-based Human Face Detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(1): 39-51. 被引量:1
  • 2Yang Ming-Hsuan, Kriegman D, Ahujua N. Detecting Faces in Images: A Survey[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58. 被引量:1
  • 3Freund Y, Schapire R. Experiments with a New Boosting Algorithm[C]//Proc. of the 13th Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 1996. 被引量:1
  • 4Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc. of IEEE Conf. on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE Press, 2001. 被引量:1
  • 5Rafael C, Richard E, Steven L. Digital Image Processing Using Matlab[M]. [S.l.]: Prentice Hall, 2005. 被引量:1

共引文献7

同被引文献41

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部