期刊文献+

Analysis of a Free Boundary Problem Modeling Multi- Layer Tumor Growth in Presence of Inhibitor

Analysis of a Free Boundary Problem Modeling Multi- Layer Tumor Growth in Presence of Inhibitor
原文传递
导出
摘要 In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this problem is locally well-posed in little Holder spaces. Next we investigate asymptotic behavior of the solution. By making delicate analysis of spectrum of the linearization of the stationary free boundary problem and using the linearized stability theorem, we prove that if the surface tension coefficient γ is larger than γ^* 〉 0 the fiat stationary solution is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficient small.
作者 HOU Xiumei
出处 《Journal of Partial Differential Equations》 2011年第4期297-312,共16页 偏微分方程(英文版)
基金 Acknowledgments This work is financially supported by the National Natural Science Foundation of China under the grant number 10771223.
  • 相关文献

参考文献1

二级参考文献10

  • 1Kyle, A. H., Chan, C. T. O., Minchinton, A. I.: Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. Biophysical J., 76, 2640-2648 (1999). 被引量:1
  • 2Kim, J. B, Stein, R., O'Hare, M. J.: Three-dimensional in vitro tissue culture models tor breast cencer-a review. Breast Cancer Research and Treatment, 149, 1-11 (2004). 被引量:1
  • 3Mueller-Kliser, W.: Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Cell Physiol, 273, 1109-1123 (1997). 被引量:1
  • 4Cui, S., Escher, J.: Well-posedness and stability of a multi-dimensional tumor growth model. Arch. Ration. Mech. Anal., 191, 173 193 (2009). 被引量:1
  • 5Hou, X. Cui.S.: Stability of stationary solutions for a multi-dimensional free boundary problem modeling tumor growth. Adv. Math. Sci. Appl., 19, 449-464 (2009). 被引量:1
  • 6Zhou, F., Escher, J., Cui, S.: Well-posedness and stability of stability of a free boundary problem modeling the growth of multi-layer tumors. J. Differential Equations, 244, 2909 2933 (2008). 被引量:1
  • 7Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value probems. In: Function Spaces, Differential Operators and Nonlinear Analysis (H. J. Schmeisser and H. Triebel ed.), Teubner, Stuttgart, 1993, 9-126. 被引量:1
  • 8Lunardi, A.: Analytic Semtgroup and Optical Regularity in Parabolic Problems, Birkh~user Verlag, Boston, 1995. 被引量:1
  • 9Escher, J., Feng, Z.: Stabilization of flows through porous media. J. Evol. Equ., T, 567-586 (2007). 被引量:1
  • 10Escher, J., Simonett, G.: Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations, 2, 619 -642 (1997). 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部