摘要
In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this problem is locally well-posed in little Holder spaces. Next we investigate asymptotic behavior of the solution. By making delicate analysis of spectrum of the linearization of the stationary free boundary problem and using the linearized stability theorem, we prove that if the surface tension coefficient γ is larger than γ^* 〉 0 the fiat stationary solution is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficient small.
基金
Acknowledgments This work is financially supported by the National Natural Science Foundation of China under the grant number 10771223.