期刊文献+

Banach空间中非扩张映射的黏性逼近方法

Viscosity Approximation Methods for Nonexpansive Mappings in Banach Spaces
下载PDF
导出
摘要 借助Banach空间中非扩张映射的黏性逼近方法,在范数一致Gateaux可微的Banach空间中,提出一种改进的黏性迭代算法,证明了由该黏性迭代算法生成的序列强收敛于一类非扩张映射的不动点.推广了一些文献中的研究成果. By viscosity approximation methods,a new viscosity iterative algorithm is introduced.The iterative sequences generated by the algorithm converge into the fixed points of a nonexpansive mapping in unifo-rmly G-differentiable Banach spaces are proved.The present results improve and extend many known results in the literature.
出处 《曲靖师范学院学报》 2011年第6期25-29,共5页 Journal of Qujing Normal University
基金 四川省教育厅重点课题基金资助项目(08ZA159)阶段性成果
关键词 非扩张映射 不动点 黏性逼近方法 范数一致Gateaux可微 nonexpansive mapping fixed point viscosity approximation methods uniformly G-differentiable norm
  • 相关文献

参考文献2

二级参考文献27

  • 1Megginson R E. An Introduction to Banach Space Theory[M]. New York: Springer-Verlag, 1998. 被引量:1
  • 2Takahashi W, Ueda Y. On Reich's strong convergence theorems for resolvents of accretive opera- tors[J], J Math Anal Appl, 1984, 104: 546-553. 被引量:1
  • 3Zhou H Y, Wei L, Cho Y J. Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces[J], Appl Math Comput, 2006, 173: 196-212. 被引量:1
  • 4Chang S S. On Chidume's open questions and approximation solutions of multivalued strongly accretive mappings equations in Banach spaces[J], J Math Anal Appl, 1997, 216: 94-111. 被引量:1
  • 5Yao Y, Chen R, Yao J C. Strong convergence and certain conditions for modified Mann iteration[J]. Nonlinear Analysis, 2008, 68: 1687-1693. 被引量:1
  • 6Song Y. A new sufficient condition for the strong convergence of Halpern type iterations[J], Appl Math Comput, 2008, 198: 721-728. 被引量:1
  • 7Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter non- expansive semigroups without Dochner integrals[J], J Math Anal Appl, 2005, 305: 227-239. 被引量:1
  • 8Xu H K. It'erative algorithms for non-linear operators[C], J Lond Math Soc, 2002, 66: 240-256. 被引量:1
  • 9Deimling K., Nonlinear functional analysis, Berlin: Springer-Verlag, 1985. 被引量:1
  • 10Goebel K., Kirk W. A., Topies in metric fixed point theory,in Cambridge Studies in Advanced Mathematics,V. 28, Cambridge: Cambridge Univ. Press, 1990. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部