期刊文献+

空中平台光电载荷无源定位数据预处理方法 被引量:1

Data pretreatment method of passive location for system of aerial platforms and photoelectric payloads
原文传递
导出
摘要 为改善光电载荷测量数据中测量信号的可信度,提出了空中平台光电载荷无源定位数据预处理方法.对实际噪声进行分类并分析了各自的产生原因,根据不同种类噪声采用了数据信号分析与图像信息分析相结合的消噪方法,解决了单一方法对实际噪声消噪不理想的问题,从而为精确定位目标提供了前提与保障,保持光电载荷的定位作战效能. In order to improve the credibility of measured signal,a data pretreatment method was put forward.The actual noises were classified and each cause of the noises was analyzed.According to the different kinds of noise,noise signal and image information analyses were used to eliminate these noises.The problem that singular methodology cannot satisfactorily de-noising actual noise was solved.It can provide prerequisite and guarantee for higher degree of accuracy of target locating and maintain the operational efficiency of the photoelectric payload.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期39-41,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 高等学校博士后专项科研基金资助项目(20090641460) 国防预研项目
关键词 目标定位跟踪 光电载荷 实际噪声分类 数据预处理 作战效能保持 target passive locating and tracking photoelectric payload actual noise classification data pretreatment method operational efficiency maintenance
  • 相关文献

参考文献10

二级参考文献50

共引文献132

同被引文献17

  • 1荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 2高隽.人工神经网络原理及仿真实例[M].2版.北京:机械工业出版社,2010. 被引量:3
  • 3Josef S, Vladimir T. On improved estimator for interceptor guidance[C]//Proc, of the American Control Conference, 2002 :203 - 208. 被引量:1
  • 4Talole S E, Phadke S B. Nonlinear target estimation in homing guidance[C]// Proc. o f AIAA Navigation and Control Conference, 2002:3122 - 3130. 被引量:1
  • 5Vapnik V N. The nature of statistical learning theory [M]. New York: Springer Verlag, 1995. 被引量:1
  • 6Vapnik V N. Statistical learning theory[M]. New York: Wiley, 1998. 被引量:1
  • 7Vapnik V N, Golowich S. A smola support vector method for function approximation[C]//Proc, of the Neural Information Processing Systems, 1997 : 281 - 287. 被引量:1
  • 8Liu G P. Nonlinear identification and control : a neural network approach[M]. New York: Springer, 2001. 被引量:1
  • 9Rostamizadeh A. Theoretical foundations and algorithms for learning with multiple kernels[D]. New York: New York University, 2010. 被引量:1
  • 10Kloft M, Brefeld U, Sonnenburg S, et al. Non-sparse regularization for multiple kernel learning[R]. USA: Cornell University, 2010. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部