期刊文献+

一种改进的粒子群优化算法 被引量:3

An Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 提出一种改进的粒子群算法(EDAPSO).这种改进算法结合分布估计算法的探索能力和粒子群算法的开发能力.首先利用EDAPSO算法解决无约束的问题,并且比较EDAPSO算法与其他三种经典的粒子群算法的结果.无约束问题的实验结果表明:EDAPSO算法可以找到更好的解,并且稳定性更高.然后EDAPSO算法被用来解决含有13个单元的电力系统的负荷经济分配问题.实验结果表明:EDAPSO算法所获得的解比近期文献所报道的解好. An improved particle swarm optimization(EDAPSO) algorithm is proposed.The improved algorithm integrates the exploration of estimation of distribution algorithm(EDA) and the exploitation of the particle swarm optimization(PSO) algorithms.The EDAPSO algorithm is applied to solve unconstrained optimization problems and the results of the EDAPSO algorithm are compared with the results of other three classical PSO algorithms.The experimental results for unconstrained optimization problems show that the EDAPSO may find better solutions and has higher numerical stability.The EDAPSO algorithm is then applied to solve the economic dispatch problems of power system with 13 units.Experimental results show that the solution obtained by the EDAPSO algorithm is better than that reported in recent literatures.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第12期1692-1695,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60674021)
关键词 粒子群算法 分布估计算法 无约束问题 经济分配问题 探索能力 particle swarm optimization estimation of distribution algorithm unconstrained optimization problem economic dispatch problem exploration
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R. Particle swarm optimization [ C]// Proceedings of International Conference on Neural Networks. Perth, 1995 : 1942 - 1948. 被引量:1
  • 2Zhang B T. A Bayesian framework for evolutionary computation[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Washington D C, 1999:777- 728. 被引量:1
  • 3Pelikan M, Goldberg D E, Cantu-Paz E. BOA: the Bayesian optimization algorithm[ C]//Proceedings of the Genetic and Evolutionary Computation Conference. Joint Meeting of the Eighth International Conference on Genetic Algorithms and the Fourth Annual Genetic Programming Conference. Orlando, 1999 : 525 - 532. 被引量:1
  • 4Enokizono M, Akinari Y. Estimation of current distribution by a hybrid of genetic algorithm and sampled pattern matching method [ J ]. IEEE Transactions on Magnetics, 1995,31 (3):2012 - 2015. 被引量:1
  • 5Baluja S, Davies S. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space [C]//Proceedings of the 14th International Conference on Maching Learning. Nashville, 1997:30 - 38. 被引量:1
  • 6Andre J, Siarry P, Dognon T. An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization [J]. Advance in Engineering Software, 2001,32:49 - 60. 被引量:1
  • 7Rahnamayan S, Tizhoosh H R, Salarna M M A. Opposition- based differential evolution [ J ]. IEEE Transactions on Evolutionary Computation, 2008,12 (1) : 64 - 79. 被引量:1
  • 8Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//Proceedings of IEEE International Conference on Evolutionary Computation. Anchorage, 1998:69-73. 被引量:1
  • 9Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002,6(1) :58 - 73. 被引量:1
  • 10Coelho L S, Mariani V C. An improved harmony search algorithm for power economic load dispatch [J]. Energy Conversion and Management, 2009,50 : 2522 - 2526. 被引量:1

同被引文献30

  • 1Stom R, Price K. Differential evolution : a simple and efficientadaptive scheme for global optimization over continuousspaces [ J ]. Journal of Global Optimization,1997 (11) : 341 -359. 被引量:1
  • 2Rahnamayan S,Tizhoosh H R, Salama M M A. Opposition-based differential evolution [ J ]. IEEE Transactions onEvolutionary Computation ,2008,12(1) :64 -79. 被引量:1
  • 3Qin A K, Suganthan P N. Self-adaptive differential evolutionalgorithm for numerical optimization [ C ]//IEEE Congress onEvolution Compulation. Edinburgh:IEEE,2005 ; 1785 - 1791. 被引量:1
  • 4Zhang J Q, Sanderson A C. JADE: adaptive differentialevolution with optional external archive [ J ]. IEEETransactions on Evolutionary Computation, 2009,13(5) :945-958. 被引量:1
  • 5Coelho L S,Mariani V C. Particle swarm approach based onquantum mechanic and harmonic oscillator potential well foreconomic load dispatch with value-point effects [ J]. EnergyConveys Manage:49( 11) :3080 -3085. 被引量:1
  • 6Sinha N, ChakrabartiR R, Chattopadhyay P K. Evolutionaryprogramming techniques for economic load dispatch [ J ].IEEE Transactions on Evolutionary Computation, 2003,7?1):82 -94. 被引量:1
  • 7Coelho L S, Mariani V C. Combining of chaotic differentialevolution and quadratic programming for economic dispatchoptimization with value point effect [ J ]. IEEE Transactionson Power Systems,2006,21(2) :989 - 996. 被引量:1
  • 8Wang S K, Chi J P, Liu C W. Non-smooth/non-convexeconomic dispatch by a novel hybrid differential evolutionalgorithm[ J ]. IET Generation Transmission & Distribution,2007,1(5) :793 -803. 被引量:1
  • 9Al-Sumait J S, Al-Othman A K’Sykulski J K. Application ofpattern search method to power system value-point economicload dispatchf J]. Electrical Power &Energy Systems,2007.29(10) :720-730. 被引量:1
  • 10Coelho L S, Mariani V C. Economic dispatch optimizationusing hybrid chaotic particle swarm optimizer [ C ]//Proceedings of IEEE International Conference on SystemsMan and Cybernetics (SMC), Montreal,2007:1963 - 1968. 被引量:1

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部