期刊文献+

Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method

Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
下载PDF
导出
摘要 For the conventional translational shape-invariant potentials (TSIPs), it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is integrable and independent of n. Based on this fact we propose a novel strategy to generate the whole set of conventional TSIPs and classify them into three types. The generating functions are given explicitly and the Morse potential is taken as an example to illustrate this strategy. For the conventional translational shape-invariant potentials (TSIPs), it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is integrable and independent of n. Based on this fact we propose a novel strategy to generate the whole set of conventional TSIPs and classify them into three types. The generating functions are given explicitly and the Morse potential is taken as an example to illustrate this strategy.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期52-56,共5页 中国物理B(英文版)
基金 supported by the State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No. 2008SH05)
关键词 translational shape-invariant potentials supersymmetric quantum mechanics analyticaltransfer matrix method scattered subwaves generating function translational shape-invariant potentials, supersymmetric quantum mechanics, analyticaltransfer matrix method, scattered subwaves, generating function
  • 相关文献

参考文献24

  • 1Cooper F- Khare A arid Sukhatme U 1995 Phys. Rep, 251 267. 被引量:1
  • 2Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21. 被引量:1
  • 3Gendenshtein L E 1983 JETP Lett. 38 356. 被引量:1
  • 4Chuan C 1991 J. Phys. A: Math. Gen. 24 L1165. 被引量:1
  • 5Gangopadhyaya A, Mallow J V and Sukhatme U P 1998 Phys. Rev. A 58 4287. 被引量:1
  • 6Khare A and Sukhatme U 1993 J. Phys. A: Math. Gen. 26 L901. 被引量:1
  • 7Sukhatme U P, Rasinariu C and Khare A 1997 Phys. Lett. A 234 401. 被引量:1
  • 8Lau H K and Leung P T 2008 J. Phys. A: Math. Theor. 41 075307. 被引量:1
  • 9Comtet A, Bandrauk and Campbell D 1985 Phys. Lett. B 150 159. 被引量:1
  • 10Friedrich H and Trost J 2004 Phys. Rep. 397 359. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部