期刊文献+

二阶非自治Hamilton系统周期解的新结果

New results of periodic solutions for second-order non-autonomous Hamiltonian systems
原文传递
导出
摘要 研究了二阶非自治Hamilton系统(t)-B(t)x(t)+▽H(t,x(t))=0,在局部超二次条件下周期解的存在性问题,利用山路定理和局部环绕定理得到了新的存在性定理,改进了已有结果. In this paper, we study the existence of periodic solutions of the following non-autonomous Hamiltonian systems (t)-B(t)x(t)+▽H(t,x(t))=0 with local superquadratic condition. New existence theorems are obtained by the mountain pass theorem and local linking theorem. Our results improve previously known results.
作者 白玉真 陈燕
出处 《中国科学:数学》 CSCD 北大核心 2011年第12期1061-1073,共13页 Scientia Sinica:Mathematica
基金 山东省自然科学基金(批准号:ZR2011AQ006 ZR2011AM008) 山东省高校科技计划(批准号:J10LA13)资助项目
关键词 山路定理 局部环绕定理 HAMILTON系统 周期解 (PS)条件 mountain pass theorem local linking theorem Hamiltonian systems periodic solutions (PS) condition
  • 相关文献

参考文献18

  • 1Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York: Springer-Verlag, 1989. 被引量:1
  • 2Li S J, Willem M. Applications of local linking to critical point theory. J Math Anal Appl, 1995, 189: 6-32. 被引量:1
  • 3Fei G H. On periodic solutions of superquadratic Hamiltonian systems. Electron J Differential Equations, 2002, 8: 1-12. 被引量:1
  • 4Tang C L, Wu X P. Periodic solutions of second order non-autonomous Hamiltonian systems with a change sign potential. J Math Anal Appl, 2004, 292: 506-516. 被引量:1
  • 5Zhao F K, Wu X. Periodic solutions for a class of non-autonomous second order systems. J Math Anal Appl, 2004, 296: 422-434. 被引量:1
  • 6Schechter M. Periodic solution of second order non-autonomous dynamical systems. Bound Value Probl, 2006, 1-9. 被引量:1
  • 7Schechter M. Periodic non-autonomous second order dynamical systems. J Differential Equations, 2006, 223: 290-302. 被引量:1
  • 8Wang Z Y, Zhang J H, Zhang Z T. Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential. Nonlinear Anal, 2009, 70: 3672-3681. 被引量:1
  • 9Tao Z L, Tang C L. Periodic and subharmonic solutions of second-order Hamiltonian systems. J Math Anal Appl, 2004, 293: 435-445. 被引量:1
  • 10Wu X. Saddle point characterization and multiplicity of periodic solutions of non-autonomous second-order systems. Nonlinear Anal, 2004, 58: 899-907. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部