期刊文献+

语音识别ASIC中端点检测算法研究与实现 被引量:2

Research and Realization of Endpoint Detection Algorithm in Speech Recognition ASIC
下载PDF
导出
摘要 提出基于短时能量和过零率的简化语音信号双门限端点检测算法,搭建Matlab的算法仿真平台,实验结果表明,基于短时能量和过零率的双门限端点检测算法在保证检测率的前提下,运算复杂度和运算量均优于倒谱、分形、加权门限端点检测方法。采用Verilog语言完成了该模块的设计和仿真,并成功应用于孤立词语音识别系统中。该语音识别系统采用定点数设计方式,语音信号的采样频率为8kHz,每次采样的数据为8bits,晶片内部稳定工作频率为20MHz。实验结果表明,在200个词源的条件下,平均可以达到90%以上的识别效果。 This paper puts forward a simplified two-threshold speech endpoint detection algorithm for speech signal based on shortterm energy and zero-crossing rate. Building a simulation platform of Matlab algorithm, and the experimental results show that the two-threshold speech endpoint detection algorithm for speech signal based on short-term energy and zero-crossing rate is better than cepstrum, fraetal, and spectrum entropy method of endpoint detection, under the premise of computing complexity and computing quantity. This paper completes the various modules of the design, simulation and systems integration with the Verilog language, using fixed-point design approach, the voice signal sampling frequency of 8kHz, the data for each sample 8bits, the internal stability of the chip operates at 20MHz, the coefficient of linear prediction obtained by the circuit compares with simulation results on Matlab platform, the error rate less than 0.2 percent, on conditions of 200 source words, it can achieve an average of more than 90% of the resuh of recognition.
作者 靳月英
出处 《计算机与现代化》 2011年第12期57-59,70,共4页 Computer and Modernization
关键词 端点检测 语音识别 专用集成电路 endpoint detection speech recognition ASIC
  • 相关文献

参考文献13

二级参考文献22

  • 1Oppenheim A, Johanson D. Computation of Spectra with Unequal Resolution Using the Fast Fourier Transform. IEEE Proceedings Letters, 1971, 59(2); 299-301. 被引量:1
  • 2Bagchi S, Mitra S K. Nonuniform Discrete Fourier Transform and its Signal Processing Applications. Norwell, USA: Kluwer,1999. 被引量:1
  • 3Markur A, Mitra S K. Warped Discrete Fourier Trans form:Theory and Applications. IEEE Trans on Circuits and Systems Ⅰ : Fundamental Theory and Applications, 2001, 48 (9):1086-1093. 被引量:1
  • 4Franz S, Mitra S K, Doblinger G. Frequency Estimation Using Warped Discrete Fourier Transform. Signal Processing, 2003,83(8):1661-1671. 被引量:1
  • 5Hermansky H. Perceptual IAnear Predictive (PLP) Analysis of Speech. Journal Acoustical Society of America, 1990, 87(4):1738-1752. 被引量:1
  • 6Hermansky H, Hanson B A. Perceptually Based Linear Predictive Analysis of Speech. In: Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Tampa USA, 1985, Ⅹ: 509-512. 被引量:1
  • 7Yong S, et al. The HTK Book(for HTK Version 3.0). Cambridge, UK: Cambridge University Technical Services. 2000. 被引量:1
  • 8Xu J F, Wei G. Noise-Robust Speech Recognition Based on Difference of Power Spectrum. Electronics Letters, 2000, 36(14): 1247-1248. 被引量:1
  • 9Thomas F.Qualieri,Discrete-Time Speech Signal Processing[M].Beijing:Publishing House of Electronics Industry,2004:197-230. 被引量:1
  • 10Huang Xuedong, Acero A. Spoken Language Processing: A Guide to Theory, Algorithm and System Development[M]. New Jersey: Prentice-Hall, 2001. 被引量:1

共引文献29

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部