期刊文献+

基于统计的介词短语边界识别研究 被引量:2

Prepositional Phrase Boundary Identification Based on Statistical Models
下载PDF
导出
摘要 以已经分词并进行了词性标注和介词短语标注的《人民日报》为实验语料,选取其中出现频次高于20次的61个介词为实验对象,采用支持向量机、最大熵和条件随机场这3种统计模型,对介词短语边界识别进行了研究.实验结果表明在3种模型中,采用条件随机场模型效果最好,微平均准确率达到了95.68%. Prepositional phrase which is constructed of a preposition and its reference is important in syntactic analysis.Tests choose the corpus of People's Daily based on word segmentation,tagging,and annotation of prepositional phrases.From which,61 frequently used prepositions are chosen;Statistical models such like SVM,ME and CRF are used to automatically identify the boundary of prepositional phrases.The results of test show that CRF outperform the other two models,it achieves a micro precision of 95.68%.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2011年第6期636-640,共5页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(60970083) 北京大学计算语言学教育部重点实验室开放课题基金资助项目(KLCL-1004) 河南省科技创新人才杰出青年基金项目(104100510026)
关键词 介词短语 支持向量机 最大熵 条件随机场 preposition phrase SVM ME CRF
  • 相关文献

参考文献11

  • 1陈昌来著..介词与介引功能[M].合肥:安徽教育出版社,2002:300.
  • 2Hindle D,Rooth M.Struetural ambiguity and lexcial relation[J].Computational linguistics,1993,19(1):103-120. 被引量:1
  • 3Brill E,Resnik P.A rule based approach to PP attachment disambiguation[C]. Proceeding of the 15th conference on ComPutational linguistics,Kokyo,JaPan,1994:1198-1204. 被引量:1
  • 4Stetion J,Nagao M. Corpus based PP attachment ambiguity resolution with a semant dictionary[C]. Proceedings of the Third workshop on Very Large Corpora,Beijing and Hong Kong,1997:18-20. 被引量:1
  • 5温苗苗,吴云芳.基于SVM融合多特征的介词结构自动识别[J].中文信息学报,2009,23(5):19-24. 被引量:4
  • 6Vapnik V N. Statistical learning theory [M]. New York: WileyInterscience Publication,1998. 被引量:1
  • 7E T Jaynes. Information theory and statistical mechanics [J]. Physics Reviews,1957,106:620-630. 被引量:1
  • 8J N Darroch, D Ratcliff. Generalized iterative scaling for loglinear models[C]. Annals of Mathematical Statistics, 43:1470-1480. 被引量:1
  • 9S Della Pietra, V Della Pietra, J Lafferty. Inducing features of random fields [R]. Technical Report CMUCS95144,CMU,1995. 被引量:1
  • 10J Lafferty, A McCallum, F Pereira. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]. International Conference on Machine Learning, 2001:282-289. 被引量:1

二级参考文献7

共引文献3

同被引文献37

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部