期刊文献+

粗糙集及PSO优化BP网络的故障诊断研究 被引量:7

Fault Diagnosis Research by Rough Set Theory and the PSO-BP Neural Network
下载PDF
导出
摘要 针对BP神经网络故障诊断存在网络结构复杂、训练时间长、精度不高的问题,将粗糙集、微粒群算法、遗传算法引入到柴油机故障诊断中,提出了基于粗糙集理论与改进BP神经网络相结合的柴油机故障诊断算法。算法采用自组织映射方法对连续属性离散化,利用粗糙集理论对特征参数进行属性约简,使用微粒群算法优化BP网络结构,从而缩短训练时间,有效提高故障诊断的准确度。最后用柴油机的实际诊断结果验证了该算法的可行性、快速性和准确性。 For the imperfections of BP network fault diagnosis model,including the complexity of the network structure,the long time of training,and the low precision,this article introduced rough set(RS),particle swarm optimization(PSO) and genetic algorithm(GA) into the diesel engine fault diagnosis,then proposed a new algorithm that is based on rough set theory and the improved BP neural network.The algorithm uses self-organization mapping net(SOM) to discretize the continuous attributes,rough set theory to make a reduction on the properties for characteristic parameters,and the particle swarm optimization(PSO) to optimize the BP network structure,so that it can shorten training time and improve the accuracy of fault diagnosis effectively.Finally,the result of the diesel engine's diagnosis proves the feasibi-lity,rapidity,veracity of the algorithm.
出处 《计算机科学》 CSCD 北大核心 2011年第11期200-203,共4页 Computer Science
基金 中央高校基本科研业务费(CDJZR10170001)资助
关键词 微粒群算法 遗传算法 BP神经网络 粗糙集理论 故障诊断 Particle swarm optimization(PSO) Genetic algorithm(GA) BP neural network Rough set(RS) Fault diagnosis
  • 相关文献

参考文献12

二级参考文献29

  • 1曾黄麟.粗集理论及其应用-关于数据推理的新方法 (修订版)[M].重庆:重庆大学出版社,1998.83-87. 被引量:1
  • 2蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003.. 被引量:34
  • 3曾黄麟,粗集理论及其应用—关于数据推理的新方法.修订版,1998年,83页 被引量:1
  • 4Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization[C]. Proc. 7th Ann. Conf. on Evolutionary Computation, Springer-Verlag, Berlin, 1998:611-616. 被引量:1
  • 5Kennedy J, Eberhart R C. Particle swarm optimization[C].Proc. IEEE Intl Conf. on Neural Networks, Perth, Australia,1995:1942-1948. 被引量:1
  • 6Eberhart R C, Shi Y. Particle swarm optimization: deve-lopments, applications and resources[C]. Proc. IEEE Int'l Conf.on Evolutionary Computation, Seoul, Korea. , 2001: 81-86. 被引量:1
  • 7Shi Y, Eberhart R C. A modified particle swarm optimizer[C].Proc. IEEE Int'l Conf. on Evolutionary Computation, NJ,1998: 69-73. 被引量:1
  • 8Blake C, Keogh E, Merz CJ. UCI repository of machine learning databases, 1998[EB/OL]. www. ic. uci. edu/~mlearn/ML-Repository. htm. 被引量:1
  • 9Komorowski J, Pawlak Z, Polkowski L, et al. Rough Sets: A Tutorial.Rough Fuzzy Hybridization, Springer-Verlag, 1998. 被引量:1
  • 10Vesanto J, Alhoniemi E.Clustering of the Self-organizing Map.IEEE-NN, 2000, 11:586. 被引量:1

共引文献163

同被引文献55

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部