期刊文献+

面向移动终端的微博信息推荐方法 被引量:5

Micro-blogging Information Recommendation System for Mobile Client
下载PDF
导出
摘要 微型博客(简称"微博")以其简洁方便的交互方式,受到越来越多手机用户的喜爱。然而,微博数据量大、更新速度快以及手机屏幕小、登录网络服务速度较慢等原因,使得用户很难通过移动终端快速了解到近期内微博流行内容。提出一种基于相关主题模型(correlated topic model)的移动微博信息推荐方法,并基于此方法设计了一个可视化移动信息推荐系统。通过‘用户-主题-词语’三维关联矩阵的建立,帮助用户快速了解最近一段时间内的热点主题,并查找与其感兴趣主题相关的其他用户作为备选好友,同时计算主题之间的关联关系,进行主题扩展。在微博代表性网站——Friendfeed数据集上进行的实验表明了该方法在移动微博信息推荐中的简洁性和有效性。 As a new type of online community,micro-blogging has gained more and more attention from mobile users.The most favorite person,as well as understanding interesting themes have become the main reason why users visit micro-blogging.In this paper,we proposed a correlated topic model-based approach for information recommendation in micro-blogging system.The approach can automatically find the relationship among users,topics and words,from which we can get the hot topics in the most recent period,the most influential users about each topic,and the incidence relation among those topics.Experiment results show that the method can provide mobile users with useful information related to their interest.
出处 《计算机科学》 CSCD 北大核心 2011年第11期137-139,166,共4页 Computer Science
基金 973国家重点基础研究发展计划(2007CB311007) 国家自然科学基金(60703085)资助
关键词 微型博客 相关主题模型 好友推荐 主题扩展 移动信息推荐 Micro-blogging Correlated topic model Friend recommendation Topic expansion Mobile information re-commendation
  • 相关文献

参考文献13

  • 1Blei D M, Lafferty J D. Correlated topic models [M]//Weiss Y, Scholkopf B,Platt J, eds. Advances in Neural Information Processing Systems. Cambridge, MA.. MIT Press, 2006. 被引量:1
  • 2Blei D M,Ng A Y,Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3 : 993-1022. 被引量:1
  • 3Hansen F, Pedersen G K. Jensen's inequality for operator and Lowner ' s theorem [J]. Math. Anal, 1982,258 : 229-241. 被引量:1
  • 4Weng J, Lira E P, Jiang J, et al. TwitterRank: finding topic-sensitive influential twitterers[C]//WSDM 2010. 2010:261-270. 被引量:1
  • 5Song S, Li Q, Zheng N. A spatio-temporal framework for related topic search in miero-blogging[C]//International Conference on Active Media Technology. Toronto, Canada, August 2010: 28-30. 被引量:1
  • 6http://whoshouldifollow, com/. 被引量:1
  • 7http://wefollow, com/. 被引量:1
  • 8李文波,孙乐,张大鲲.基于Labeled-LDA模型的文本分类新算法[J].计算机学报,2008,31(4):620-627. 被引量:103
  • 9http://www, ranks, nl/resources/stopwords, html. 被引量:1
  • 10Celli F,Lascio F M L D,Magnani M, et al. Social network data and practices: the case of friendfeed[C] // International Conference on Social Computing, Behavioral Modeling and Prediction. Lecture Notes in Computer Science. Springer,Berlin,2010. 被引量:1

二级参考文献32

  • 1张启蕊,张凌,董守斌,谭景华.训练集类别分布对文本分类的影响[J].清华大学学报(自然科学版),2005,45(S1):1802-1805. 被引量:27
  • 2曾雪强,王明文,陈素芬.一种基于潜在语义结构的文本分类模型[J].华南理工大学学报(自然科学版),2004,32(z1):99-102. 被引量:27
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:388
  • 4Fabrizio Sebastiani. Text categorization//Alessandro Zanasi. Text Mining and its Applications. Southampton, UK: WIT Press, 2005:109-129 被引量:1
  • 5Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1-47 被引量:1
  • 6Moschitti A, Basili R. Complex linguistic features for text classification: A comprehensive study//McDonald S, Tait J. Proceedings of the ECIR-04. Sunderland: Springer-Verlag. Sunderland, U. K., 2004:181-196 被引量:1
  • 7Kehagias A, Petridis V, Kaburlasos V G, Fragkou P. A comparison of word- and sense- based text categorization using several classification algorithms. Journal of Intelligent Information Systems, 2003, 21(3): 227-247 被引量:1
  • 8Deerwester S, Dumais S T, Furnas et al. Indexing by latent semantic indexing. Journal of the American Society for Information Science, 1990, 41(6): 391-407 被引量:1
  • 9Thomas Hofmann. Probabilistic latent semantic indexing// Proceedings of the SIGIR. Berkeley, CA, USA, 1999:50-57 被引量:1
  • 10Schutze H, Hull D A et al, A comparison of classifiers and document representations for the routing problem//Proceedings of the SIGIR-95. Seattle, Washington, USA, 1995: 229-237 被引量:1

共引文献176

同被引文献60

引证文献5

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部