期刊文献+

基于空间自适应正则化的超分辨率重建算法 被引量:1

Super Resolution Reconstruction Algorithm Based on Spatial Adaptive Regularization
下载PDF
导出
摘要 针对模糊图像的复原问题,从正则化技术克服问题病态性的思想出发,研究了一种有效的超分辨率重建算法。该算法充分考虑了图像的局部特性,引入了空间自适应加权矩阵,采用全局正则化参数与局部正则化参数矩阵相结合的方法,弥补了传统正则化方法所带来的正则化误差以及噪声放大误差。实验结果表明,该算法能够有效地减少重建误差,保护图像的细节信息。 Aiming at the restoration of blurred image, an effective approach to super resolution image restoration was proposed based on regularization technique for dealing with ill-posed problem. The new algorithm gave full consideration to local characteristic of the image, and introduced spatial adaptive weighting matrix. By combining global regularization parameter with local regularization matrix, the new algorithm overcame regularization error and noise amplification error which were generated by regularization. new algorithm could decrease reconstruction error and protect the The results of the experiments indicate that the detail information in high resolution image.
出处 《科学技术与工程》 2011年第34期8509-8513,共5页 Science Technology and Engineering
关键词 超分辨率 正则化 空间自适应 图像重建 super resolution regularization spatial adaptive image restoration
  • 相关文献

参考文献7

  • 1袁建华.空间自适应正则化超分辨率图像重建[J].计算机应用,2009,29(11):3008-3010. 被引量:4
  • 2Lagendijk R L, Biemond J, Boekee D E. Regularized iterative image resolution with ring reduction. IEEE Transactions on Acoustics, Speech, and Signal Procession, 1988 ;36 (12) : 1874--1887. 被引量:1
  • 3Katsaggelos A K, Biemond J, Mersereau R M. A regularized iterative image resolution algorithm. IEEE Transactions on Signal Processing, 1991 ;39(4) :914-929. 被引量:1
  • 4Reeves S J. Optimal space-varying resolution in iterative image resolution. IEEE Transactions on Image Processing, 1994;3 (3) :319--324. 被引量:1
  • 5Choy S S O, Chan Y H, Siu W C. Optimal choice of local regulafization weights in iterative image resolution. Atlant, USA:Proceedings IEEE International Symposium on Circuits and Systems, 1996, 1996: 604-607. 被引量:1
  • 6Hu H, Kondi L P. An image super resolution algorithm for different error levels per frame. IEEE Transactions on Image Processing, 2006; 15(3): 592--603. 被引量:1
  • 7狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006,35(5):766-771. 被引量:65

二级参考文献21

  • 1狄红卫,陈木生.一种自适应的多光谱图像与全光图像融合新方法[J].光子学报,2005,34(3):452-454. 被引量:9
  • 2胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 3李晖晖,郭雷,刘航.基于区域分割的遥感图像融合方法[J].光子学报,2005,34(12):1901-1905. 被引量:25
  • 4TSAI R Y, HUANG T S. Muhi-frame image restoration and registration [ C]// Advances in Computer Vision and Image Processing. Greenwich, CT: JAI Press, 1984, 1:317-339. 被引量:1
  • 5STARK H, OSKOUI P. High resoluton image recovery from imageplane arrays, using convex projections [ J]. Journal of the Optical Society of America: A, 1989,6(11) : 1715 - 1726. 被引量:1
  • 6IRANI M, PELEG S. Improving resolution by image registration [J]. CVGIP: Graphical Models and Image Processing, 1991, 53 (3) : 231 - 239. 被引量:1
  • 7SCHULTZ R R, STEVENSON R L. A bayesian approach to image expansion for improved definition [ J]. IEEE Transactions on Image Processing, 1994, 3 ( 3 ) : 233 - 242. 被引量:1
  • 8NHAT N, MILANFAR P, GOLUB G. A computationally efficient super-resolution image reconstruction algorithm [ J]. IEEE Transactions on Image Processing, 2001, 10(4) :573 -583. 被引量:1
  • 9ELAD M, FEUER A. Superresolution restoration of an image sequence: Adaptive filtering approach [ J]. IEEE Transactions Image Processing, 1999, 8(3) : 387 - 395. 被引量:1
  • 10BABACAN S D, MOLINA R, KATSAGGELOS A K. Total variation super resolution using a variational approach [ C]//ICIP 2008: 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE Press, 2008:641-644. 被引量:1

共引文献67

同被引文献7

  • 1苗晴,唐斌兵,周海银.空域中基于正则化技术的有效图像复原算法[J].系统工程,2005,23(11):91-94. 被引量:6
  • 2Lagendijk RL.BiemondJ. Iterative Identification and Restorationof Images[M]. BostonrKluwer Academic Publishers, 1991. 被引量:1
  • 3Katsaggelos A K. Digital Image FiestoratiorifM]. Berlin: Springer-Verlag,1991. 被引量:1
  • 4Perry S W, Guan L.Weight assignment for adaptive imagerestoration by neural networks[J |. IEEE Transactions onNeural Networks,2000, 11(1 ):156-170. 被引量:1
  • 5Hong M C,Stathaki T,Katsaggelos A K. Iterative regularizedleasKneanmixeckiormimagerestoratioiijj).Optical Engineering,2002,41(10):2515-2524. 被引量:1
  • 6Cetin M, Karl W C. Feature-enhanced synthetic aperture radarimage formation based on nonquadratic regularization[J]. IEEETrans Image Process,2002,10(4):623-631. 被引量:1
  • 7沈峘,李舜酩,毛建国,辛江慧.数字图像复原技术综述[J].中国图象图形学报,2009,14(9):1764-1775. 被引量:43

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部