期刊文献+

基于ADL小波变换的图像压缩算法 被引量:2

Image Compression Algorithm Based on Adaptive Directional Lifting Wavelet Transform
下载PDF
导出
摘要 提出一种基于自适应方向提升(ADL)小波变换的图像压缩算法。根据灰度共生矩阵角二阶矩的差异,将图像分割成平坦性不同的分块。对纹理信息较少的块,采用一般提升小波变换以减少变换时间。对纹理信息较多的块,采用方向提升小波以提高变换效果。结合多级树集合分裂编码和算术编码对变换系数和方向信息分别进行编码。实验结果表明,与ADL算法相比,该算法能有效减少方向小波变换时间。 Based on the general Adaptive Directional Lifting(ADL) promotion transformation,this paper proposes an image compression algorithm based on ADL wavelet transform.Using this algorithm,the image is divided into flat and non flat block according to different angle second moment of Gray Level Co-occurrence Matrix(GLCM).For each block,the lifting scheme is adaptively selected to reduce the computation of directional lifting wavelet.For the flat blocks,it uses ordinary horizontal and the vertical promotion directly to reduce the time.For the non flat blocks,it uses the directional lifting wavelet to enhance the result.Experimental results show that this algorithm can dramatically reduce the computational time compared with the tradditional ADL method.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期199-201,共3页 Computer Engineering
关键词 图像压缩 自适应方向提升 灰度共生矩阵 角二阶矩 多级树集合分裂 image compression Adaptive Directional Lifting(ADL) Gray Level Co-occurrence Matrix(GLCM) angle second moment Set Partition in Hierarchical Trees(SPIHT)
  • 引文网络
  • 相关文献

参考文献7

  • 1Sweldens W. The Lifting Scheme: A New Philosophy in Biortho- gonal Wavelet Constructions[C]//Proc. of SPIE Conference on Wavelet Applications in Signal and Image Processing III. San Diego, USA: SPIE Press, 1995: 68-79. 被引量:1
  • 2Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106. 被引量:1
  • 3Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Trans. on Image Processing, 2002, 11 (6): 670-684. 被引量:1
  • 4Pennec E L, Mallat S. Sparse Geometric Image Representation with Bandelets[J]. IEEE Trans. on Image Processing, 2005, 14(4): 423-438. 被引量:1
  • 5Ding Wenpeng, Wu Feng, Wu Xiaolin, et al. Adaptive Directional Lifting-based Wavelet Transform for Image Coding[J]. IEEE Trans. on Image Processing, 2007, 16(2): 416-427. 被引量:1
  • 6陈锦春,蔡灿辉.基于方向提升小波变换的多描述视频编码[J].计算机工程,2009,35(22):162-164. 被引量:4
  • 7Karnble S, Agarwal S, Shrivastava V K, et al. DCT Based Texture Watermarking Using GLCM[C]//Proc. of IACC' 10. Pafiala, India: IEEE Press, 2010. 被引量:1

二级参考文献5

  • 1KIM Yong-deak.Multiple description scalable video coding based on 3D lifted wavelet transform[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(5):857-863. 被引量:3
  • 2Goyal V K. Multiple Description Coding: Compression Meets the Network[J]. IEEE Signal Processing, 2001, 18(5): 74-94. 被引量:1
  • 3Schaar M V D, Turaga D S. Multiple Description Scalable Coding Using Wavelet-based Motion Compensated Temporal Filtering[C]//Proc. of ICIP'03. Barcelona, Spain: [s. n.], 2003. 被引量:1
  • 4Zhang Nan, Lu Yah, Wu Feng, et al. Efficient Multiple-description Image Coding Using Directional Lifting-based Transform[J]. IEEE Transactions on Circuit and System for Video Technology, 2008, 18(5): 646-656. 被引量:1
  • 5Ohm J, Schaar M, Woods J W. Interframe Wavelet Coding-motion Picture Representation for Universal Scalability[J]. Signal Processing: Image Communication, 2004, 19(9): 877-908. 被引量:1

共引文献3

同被引文献19

  • 1Han J, Saxena A, Melkote V, Rose K. Jointly optimized spatial prediction and block transform for video and image coding. IEEE Transactions on Image Processing, 2012, 21(4):1874-1884. 被引量:1
  • 2Antonini M, Barlaud M. Image coding using wavelet transform. IEEE Trans. on Image Processing, 1992, 1(2):205-220. 被引量:1
  • 3Jerome M. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Processing, 1993,41(12): 3445-3462. 被引量:1
  • 4Arnir S, William P. A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. on Circuits and Systems for Video Technology, 1996, 6(3):243-250. 被引量:1
  • 5Stütz T, Mühlbacher B, Uhl A. Best wavelet packet bases in a JPEG2000 rate-distortion sense: the impact of header data.IEEE International Conference on Image Processing (ICIP’05). 2005.3. 201-204. 被引量:1
  • 6Rein S, Reisslein M. Low-memory wavelet transforms for wireless sensor networks: a tutorial. IEEE Communications Surveys & Tutorials, 2011(13): 291-307. 被引量:1
  • 7Ma T, Shrestha P, Hempel M, Peng D, Sharif H.Low-complexity image coder/decoder with an approaching-entropy quad-tree search code for embedded computing platforms. 2011 18th IEEE International Conference on Image Processing. 2011. 297-300. 被引量:1
  • 8骆伟祺,黄继武,丘国平.鲁棒的区域复制图像篡改检测技术[J].计算机学报,2007,30(11):1998-2007. 被引量:65
  • 9BIANCHI T,PIVA A. Image Forgery Localization via Block--Grained Analysis of JPEC Artifacts[J]. IEEE Transactions on Information Forensics and Seeunty, 2012,7(3) :1003--1017. 被引量:1
  • 10Rein S, Reisslein M. Low-- memory wavelet transforms for wireless sensor networks: a tutorial[J].IEEE Communications Surveys & Tutorials, 2011 (13) : 291 -- 307. 被引量:1

引证文献2

;
使用帮助 返回顶部