期刊文献+

基于信任模型的协同过滤推荐算法 被引量:10

Collaborative Filtering RecommendationAlgorithm Based on Trust Model
下载PDF
导出
摘要 提出一种基于信任机制的协同过滤推荐算法,其中,直接信任度基于共同评价项目得出,推荐信任度通过对项目的预测得出。借鉴社会网络中人与人之间的信任评价方法,使用户之间的相似度计算更加准确,从而为目标用户提供更好的推荐结果。实验结果表明,该模型提高了信任度预测的准确性及系统的推荐质量。 This paper proposes a collaborative filtering recommendation algorithm based on trust mechanism.Direct trust is based on common rating data and indirect trust is based on the predict data.By considering the social network between Person’s trust assessment method,the similarity between the users is more accurate,so that better neighbors for a target user and the better recommendation result can be gained.Experimental result indicates that based on the trust model’s recommendation system,can consistently achieve better prediction accuracy and improves system’s recommendation quality effectively.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期26-28,共3页 Computer Engineering
关键词 电子商务 推荐系统 协同过滤 信任模型 推荐算法 E-commerce recommendation system collaborative filtering trust model recommendation algorithm
  • 相关文献

参考文献7

  • 1Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. 被引量:1
  • 2Breese J, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, USA: [s. n.], 1998. 被引量:1
  • 3徐翔,王煦法.协同过滤算法中的相似度优化方法[J].计算机工程,2010,36(6):52-54. 被引量:37
  • 4邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:556
  • 5Azzedin F, Maheswaran M. Towards Trust-aware Resource Management in Grid Computing Systems[C]//Proceedings of the 2nd International Symposium on Cluster Computing and the Grid. [S. l.]: IEEE Press, 2002. 被引量:1
  • 6Kamvar S D, Schlosser M T, Garcia-Molina H. The Eigentrust Algorithm for Reputation Manageraent in P2P Networks[C]// Proceedings of the 12th International Conference on World Wide Web. New York, USA: ACM Press, 2003:640-651. 被引量:1
  • 7Deshpande M, Karypis G. Item-based Top-n Recommendation Algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177. 被引量:1

二级参考文献18

  • 1孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 2Sarwar B M, Karypis G, Konstan J A. Application of Dimensionality Reduction in Recommender System A Case Study[C]//Proc. of ACM WebKDD Workshop. [S.l.]: ACM Press, 2000. 被引量:1
  • 3Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 4Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 5Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 6Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 9Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 10Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1

共引文献581

同被引文献105

引证文献10

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部