期刊文献+

基于谱方法和松弛标记的非刚性点匹配算法

A novel algorithm based on spectral method and relaxation labeling for non-rigid point matching
下载PDF
导出
摘要 谱方法是点模式匹配中一种重要的方法,但该方法对于点模式中噪声与出格点较为敏感,为克服了传统谱匹配方法存在问题,提出了一种运用谱方法和松弛标记的非刚性点模式匹配算法。该方法首先提取点模式中点的KL特征获取点与点的匹配概率,然后运用松弛标记法得到点集间明确的匹配关系;同时,为保证算法的鲁棒性,给松弛标记法定义一个匹配的目标函数,在函数的优化框架下迭代的计算匹配的最优解。本文主要从三方面对传统谱方法进行了改进:首先运用基于KL的匹配概率计算方法提高了原谱图方法抗噪方面的性能,进而在松弛标记方法框架中运用谱方法进行匹配,使算法对出格点具有更好的鲁棒性,最后融合的运用了点的谱图特征和空间分布特征,使算法在较大形变情况下仍能实现有效匹配。文章实验验证了算法的有效性。 Spectral correspondence finding is an important method for point pattern matching.But it' s sensitive to noise and oudiers.In order to overcome the traditional spectral correspondence finding method' s problem,a new algorithm is proposed for non-rigid point pattern matching by using spectral graph analysis combining with relaxation labeling.The algorithm first compute the matching probability by KL features of the points,then use the relaxation labeling method to get the correspondences between the point sets. At the same time,an objective function on matching is defined for the relaxation labeling method,and the algorithm find the optimal solution for matching under the iterative optimal frame.There are three improvements made to the traditional spectral correspondence finding method in this paper.First,KL correspondence probability method is used to improve the algorithm' s ability for standing the noises. Secondly,the spectral method is embedded in the relaxation labeling framework to get the method more robust while outliers appear. Thirdly,two kinds of information are utilized for correspondence finding,namely spectral information,and space distribution information,. These makes the algorithm be able to handle with large deformation.
出处 《信号处理》 CSCD 北大核心 2011年第11期1757-1761,共5页 Journal of Signal Processing
基金 国家自然科学基金:60872153
关键词 点模式匹配 谱匹配 KL特征 松弛标记 非刚性形变 Point pattern matching Spectral correspondence KL feature Relaxation labeling Non-rigid deformation
  • 相关文献

参考文献11

  • 1方辉,杨明等.基于地面特征点匹配的无人驾驶车全局定位.2010,32(1):55-60. 被引量:1
  • 2Peter W. M. Tsang, Terry Y. F and W. C. Situ. En- hanced affine invariant matching of broken boundaries based on particle swarm optimization and the dynamic mi- grant principle. Applied soft Computing, 2010, 10 (2) : 432-438. 被引量:1
  • 3谭志国,鲁敏,任戈,刘顺发.匹配与姿态估计的粒子群优化算法[J].中国图象图形学报,2011,16(4):640-646. 被引量:4
  • 4Peter W. M. Tsang, W. C. Situ. Affine invariant matc- hing of broken boundaries based on simple genetic algo- rithm and contour reconstruction. Pattern Recognition Let- ters 2010,9(31 ) :771-780. 被引量:1
  • 5Weidong Yan, Zheng Tian, etc. Point Pattern Matching with Locality Preserving Descriptors. 2009 Sixth Interna- tional Conference on Fuzzy Systems and Knowledge Dis- covery ,2009.8:256-259. 被引量:1
  • 6Shanli Xuan, Dong Liang, etc. Method with the center of graph for point pattern matching. 2009 9th International Conference on Electronic Measurement & Instruments, 2009. 1 (8) : 345-349. 被引量:1
  • 7Jian Zhao, Shilin Zhou, Jixiang Sun, Zhiyong Li. Point pattern matching using Relative Shape Context and relaxa- tion labeling. 2010 2nd International Conference on Ad- vanced Computer Control, 2010,2:516-520. 被引量:1
  • 8赵键,孙即祥,李智勇,陈明生.基于相对形状上下文与概率松弛标记法的点模式匹配算法[J].信号处理,2011,27(5):664-671. 被引量:3
  • 9唐俊,王年,梁栋,范益政,贾兆红.一种结合形状上下文分析的Laplace谱匹配算法[J].系统仿真学报,2009,21(14):4345-4350. 被引量:10
  • 10Carcassoni M, Hancock ER. Spectral correspondence for point pattern matching. Pattern Recognition 2003 ;36( 1 ) : 193-204. 被引量:1

二级参考文献49

  • 1连玮,张洪才,潘泉.一种采用二次式作为阻尼项的点匹配算法[J].中国图象图形学报(A辑),2004,9(9):1080-1087. 被引量:3
  • 2王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32
  • 3G L Scott, H C Longuet-Higgins. An Algorithm for Associating the Features of Two Images [C]// Proc. Roy. Soc. London Ser. B (Biological) (S0962-8452). London, UK: Royal Society of London, 1991, 244: 21-26. 被引量:1
  • 4L S Shapiro, J Brady. Feature-based Correspondence: An Eigenvector Approach [J]. Image and Vision Computing (S0262-8856), 1992, 10(5): 283-288. 被引量:1
  • 5M Carcassoni, E R Hancock. Spectral Correspondence for Point Pattern Matching [J]. Pattern Recognit. (S0031-3203), 2003, 36(1): 193 -204. 被引量:1
  • 6X Bai, H Yu, E R Hancock. Graph Matching Using Spectral Embedding and Alignment [C]// Proe. 17th Int. Conf. Pattern Recognition (S1063-6919). Los Almitos, USA: 1EEE CS Press, 2004, 3: 398-401. 被引量:1
  • 7R Sinkhom. A Relationship between Arbitrary Positive Matrices and Doubly Stochastic Malrices [J]. The Annals of Mathematical Statistics (S0003-4851), 1964, 35(2): 876-879. 被引量:1
  • 8S Belongie, J Malik, J Puzicha. Shape Matching and Object Recognition Using Shape Contexts [J]. IEEE Trans. Pattern Anal. and Machine Intell. (S0162-8828), 2002, 24(4): 509-522. 被引量:1
  • 9Y Zheng, D Doermann. Robust Point Matching for Non-rigid Shapes: a Relaxation Labeling Based Approach [J]. IEEE Trans. Pattern Anal. and Machine Intell. (S0162-8828), 2006, 28(4): 643-649. 被引量:1
  • 10H F Wang, E R Hancock. Correspondence Matching Using Kernel Principal Components Analysis and Label Consistency Constraints [J]. Pattern Recognit. (S0031-3203), 2006, 39(6):1012-1025. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部