期刊文献+

基于趋势点状态模型的时间序列预测算法 被引量:5

Time series prediction algorithm based on trends point state model
下载PDF
导出
摘要 针对传统的时间序列线性预测算法对时间序列的线性程度要求高,而非线性方法一般建模复杂且计算量大,提出了一种基于趋势点状态模型的时间序列预测算法。该算法无须考虑时间序列是否具有显著线性特征,通过序列间耦合度挖掘时间序列上的相似子序列,找出相对应的相似序列趋势点,建立趋势点状态模型并求出预测值。算法建模简单,复杂度较低。通过模拟实验,结果表明该算法性能良好,尤其对具有周期性的时间序列预测精度很高。 The traditional linear time series prediction algorithms for time series require high linearity, and nonlinear methods are generally modeling complex and have a large computation. For the above, this paper proposed an algorithm for time series prediction which based on trends point state model. The algorithm didn' t regard to whether the time series forecast significant linear features, first digged out the similar sequence on time series through the coupling between sequences, and identified the corresponding trend points of similar sequence, then established the trend point state model and calculated the predicted value. Using this algorithm modeling is simple, arid the complexity is low. Through simulation, the results show that the algorithm has a high prediction accuracy, especially for periodic time series.
出处 《计算机应用研究》 CSCD 北大核心 2011年第12期4510-4512,4516,共4页 Application Research of Computers
关键词 时间序列 相似序列 趋势点状态模型 预测 周期 time series similar sequence trends point state model(TPSM) prediction periodic
  • 相关文献

参考文献8

二级参考文献52

共引文献36

同被引文献59

  • 1白翔宇,叶新铭,蒋海.基于小波变换与自回归模型的网络流量预测[J].计算机科学,2007,34(7):47-49. 被引量:22
  • 2George E.P.Box,Gwilym M.Jenkins.时间序列分析预测与控制[M].北京:中国统计出版社,1997. 被引量:6
  • 3Tsao J. Interpolation artifacts in multimodality image registration based on maximization of mutual information [J]. IEEE Transactions on Medical Imaging 2003, 22 (7): 854 - 864. 被引量:1
  • 4Jim J X, Pan H, LiangZ. Further analysis of interpolation effects in mutual information-based image registration [J]. IEEE Transac- tion on Medical Imaging. 2003, 22 (9): 1131-1140. 被引量:1
  • 5Viola P, Michael J. Jones, Snow D. Detecting Pedestrians Using Patterns of Motion and Appearance[A]. Proceedings of the Ninth IEEE International Conference on Computer Vision [C]. 2003:734 - 741. 被引量:1
  • 6Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection [A]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C]. 2005. 被引量:1
  • 7Wu B, Nevatia R. Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors [A]. Proceeding of the Tenth IEEE International Conference on Computer Vision [C]. 2005. 被引量:1
  • 8运行监测协调局.电话用户总数突破15亿户.中国工信部[EB/OL].[2014-02-21].http://www.miit.gov.cn/n11293472/n11293832/n11294132/n12858447/15891659.html. 被引量:1
  • 9Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters(S1370-4621),1999,9(3):293-300. 被引量:1
  • 10Yu G,Zhang C.Switching ARIMA model based forecasting for traffic flow[C]//Acoustics,Speech,and Signal Processing,2004.Proceedings.(ICASSP'04).IEEE International Conference on.IEEE,2004,2:ii-429-32 vol.2. 被引量:1

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部