期刊文献+

微支抗种植体及不同矫治力作用下髁突软骨中核心结合因子a1的表达 被引量:1

Core binding factor alpha 1 expression in condylar cartilage under different microscrew anchorage orthodontic forces
下载PDF
导出
摘要 背景:近年来微支抗种植体以其操作简单、创伤小、支抗强等优点被正畸医生广泛应用于口腔正畸临床,但鲜见用于Ⅱ类颌间的牵引。目的:以微种植体为支抗,探讨不同矫治力促兔下颌前导后髁突软骨中核心结合因子a1蛋白的表达及与髁突改建的影响。方法:8周龄健康新西兰大耳白兔随机分为实验组和对照组,实验组根据矫治力的不同分为100g、200g、300g和400g组。实验组动物以微型螺钉种植体为支抗,对兔下颌进行Ⅱ类颌间牵引。实验后4周取材,检测髁突软骨中Cbfa1的表达。结果与结论:下颌持续牵引后,髁突后区各层的厚度明显高于髁突中前部。与对照组相比随矫治力的增加髁突各层厚度增加,髁突软骨中Cbfa1表达也明显增加,至200g时达到峰值,而后随矫治力的增加,髁突各层厚度逐渐变薄,髁突软骨中Cbfa1表达也逐渐降低(P<0.05),提示矫治力能影响髁突软骨中Cbfa1的表达,说明适宜的矫治力作用有利于髁突软骨的改建。 BACKGROUND:Recently,microscrew anchorage implant has been widely used in the orthodontics due to its simple operation,little trauma and strong anchorage,but it is rarely used in type Ⅱ intermaxillary extraction.OBJECTIVE:To establish the animal experiment model of orthodontic microimplant,to investigate the effects of orthodontic forces on the expression of core binding factor a1(Cbfa1) in condylar cartilage and on condylar process modification.METHODS:Thirty 8-week-old healthy New Zealand rabbits were randomly divided into experimental group(n=24) and control group(n=6).According to different forces,the experimental group was randomly subdivided into four groups:100 g,200 g,300 g,and 400 g.Rabbits from the experimental group were performed type Ⅱ intermaxillary extraction taking microscrew implants as anchorages.At 4 weeks after surgery,Cbfa1 expression in the condylar cartilage was detected.RESULTS AND CONCLUSION:Different orthodontic forces resulted in different Cbfa1 expression in the condylar cartilage.When orthodontic force was 100 g and 200 g,Cbfa1 expression was significantly higher compared with the control group and orthodontic force of 200 g lead to highest Cbfa1 expression.When the orthodontic force was 300 g,there was no significant difference between the experimental and control groups(P 0.05).When orthodontic force was 400 g,Cbfa1 expression was significantly greater in the experimental group than in the control group(P 0.05).Orthodontic force can influence the expression of Cbfa1 in the condylar cartilage,suggesting that appropriate orthodontic forces have good effects on remodeling condylar cartilage.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第41期7673-7676,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
  • 相关文献

参考文献18

  • 1Zeng XL. Beijing: Peking University Press, 2000:433. 被引量:1
  • 2Rabie AB, Xiong H, Hagg U. Forward mandibular positioning enhances condylar adaptation in adult rats. Eur J Orthod. 2004; 26(4):353-358. 被引量:1
  • 3Lin JC, Liou E J, Yeh CL, et al. Acomparative evaluation of current orthodontic miniscrew systems. World J Orthod. 2007;8(2): 136-144. 被引量:1
  • 4Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 103(5):e6-15. 被引量:1
  • 5Park HS, Jang BK, Kyung HM. Maxillary molar intrusion with micro-implant anchorage (MIA). Aust Orthod J. 2005;21(2): 129-135. 被引量:1
  • 6Ziros PG, Gil AP, Georgakopoulos T, et al. The bone-specific transcriptional regulator Cbfal is a target of mechanical signals in osteoblastic cells. J Biol Chem. 2002;277(26):23934-23941. 被引量:1
  • 7Gu ZY, Hu Y, Zhang YK, et al. Shanghai Kouqiang Yixue. 2005; 14(1 ): 33-36. 被引量:1
  • 8Miyawaki S, Koyama I, Inoue M, et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003; 124(4): 373-378. 被引量:1
  • 9umemori M, Sugawara J, Mitani H, et al. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop. 1999;115(2):166-174. 被引量:1
  • 10Freudentlhaier JW, Haas R, Bantleon HP. Bicortical titanium screws for critical orthodontic anchorage in the mandible: a preliminary report on clinical applications. Clin Oral Implants Res. 2001 ;12(4):358-363. 被引量:1

同被引文献30

  • 1林晓梅,裴建国,牛刚,白昱.医学图像三维重建方法的研究与实现[J].长春工业大学学报,2005,26(3):225-228. 被引量:26
  • 2邱蔚六.生物力学原理无所不在——浅论生物力学与口腔医学的关系[J].医用生物力学,2007,22(2):115-118. 被引量:4
  • 3Motoyoshi M,Yano S,Tsuruoka T. Biomechanical ef ect of abutment on stability of orthodontic mini-implant.A finite element analysis[J].{H}Clinical Oral Implants Research,2005,(04):480-485. 被引量:1
  • 4Ng KW,Mauck RL,Statman LY. Dynamic deformational loading results in selective application of mechanical stimulation in a layered,tissue-engineered cartilage construct[J].{H}BIORHEOLOGY,2006,(3-4):497-507. 被引量:1
  • 5Nagasao T,Kobayashi M,Tsuchiya Y. Finite element analysis of the stresses around fixtures in various reconstructed mandibular models-part load)[J].J Caniomaxil ofac Surg,2003,(03):168-175. 被引量:1
  • 6Bougherara H,Zdero R,Shah S. A biomechanical assessment of modular and monoblock revision hip implants using FE analysis and strain gage measurement[J].J Orthopaed Surg Res,2010,(34):1-12. 被引量:1
  • 7Zhao X,Chosa E,Totoribe K. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis[J].{H}Journal of Orthopaedic Science,2010.632-640. 被引量:1
  • 8Hudieb M,Kasugai S. Biomechanical effect of crestal bone osteoplasty before implant placement:a three-dimensional finite element analysis[J].Int J Oral Maxil ofac Surg,2011,(02):200-206. 被引量:1
  • 9皮昕.口腔解剖生理学[M]{H}北京:人民卫生出版社,2007. 被引量:1
  • 10Koolstra JH,van Eijden TM. Application and validation of athree-dimensional mathematical model of the human masticatorysystem in vivo[J].{H}Journal of Biomechanics,1992,(02):75-187. 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部