期刊文献+

一种新的多变量时间序列数据异常检测方法 被引量:3

A new method of detecting anomalies in multivariate time series
下载PDF
导出
摘要 介绍了一种通过建立多变量时间序列数据相似度矩阵,对相似度矩阵进行转换以最大化数据之间的相关性,并采用随机游走模型计算数据点之间的连接系数来检测数据点上异常的方法。该方法充分利用了数据之间的相关性,有效减少了数据中不同程度噪声对异常检测的影响,检测过程中的漏报率和误报率明显减少,通过仿真实验验证了该方法的有效性。 A new method of detecting anomalies in MTS (multivariate time series) is introduced, in which a similarity matrix for MTS is set up and the similarity matrix is transformed to maximize the correlation between the data points and then the anomalous data points are detected by comparing the predefined threshold with the connectivity coefficient calculated through the random walk model. This detection method makes full use of the correlation between the data points and effectively reduces the influence of the noise. The omission rate and false alarms decrease obviously, and the simulation has tested and verified the validity of this method.
作者 李权 周兴社
出处 《时间频率学报》 CSCD 2011年第2期154-158,共5页 Journal of Time and Frequency
关键词 时间序列数据 异常检测 相似性分析 MTS(multivariate time series) anomalies detection similarity analysis
  • 相关文献

参考文献12

  • 1BARAGONA R, BATTAGLIA F. Outlier detection in multivariate time series by independent component analysis[J]. Neural Computation, 2007, 19(7): 1962-1984. 被引量:1
  • 2LAST L, KANDEL A, BUNKE H. Data Mining in Time Series Databases[M]. Singapore: World Scientific Publishing Company, 2004. 被引量:1
  • 3YAMANISHI K, TAKEUCHI J I. A unifying framework to detecting outliers and change-points from nonstationary data[C]// Proceedings of the Eighth ACM SIGKDD International Conference on KDD. New York: ACM, 2002: 676-681. 被引量:1
  • 4JAGADISH H V, KOUDAS N, MUTHUKRISHNAN S. Mining deviants in a time series database[C]//Proceedings of 25th International Conference on Very Large Data Bases. San Fracisco: Morgan Kanfman Publishers Ine, 1999:102-113. 被引量:1
  • 5KOTSAKIS E, WOLSKI A. MAPS: a method for identifying and predicting aberrant behavior in time series[C]//Proceeding of 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. New York: ACM, 200h 314-325. 被引量:1
  • 6HAWKINS D M. Identification of Outliers[M]. London: Chapman and Hall, 1980. 被引量:1
  • 7吴婷..数据挖掘在信用卡欺诈识别上的应用研究[D].东南大学,2006:
  • 8范秉琪,朱晓东,马鸿雁,王杰.基于数据挖掘的网络入侵检测系统的设计与应用[J].河南理工大学学报(自然科学版),2006,25(3):247-250. 被引量:7
  • 9KNORR E M, RAYMOND T N. A unified notion of outliers: properties and computation[C]/! KDD-1997 Proceedings. [S.I.]: AAAI Press, 1997: 219-222. 被引量:1
  • 10BREUNIG M M, KRIEGEL H P, RAYMOND T N, et al. LOF: identifying density-based local ontliers[C]//SIGMOD' 00 Proceedings of the 2000 ACM SIGMOD International Conference on Management of Date. New York: ACM, 2000: 93-104. 被引量:1

二级参考文献7

共引文献6

同被引文献29

  • 1郝井华,刘民,吴澄,陈少卿.一种基于LLM的高维时间序列数据异常检测方法[J].控制工程,2005,12(3):207-209. 被引量:1
  • 2薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 3CHANDOLA V, BANERJEE A, KUMAR V. Anomaly de- tection: a survey[J]. ACM Computing Surveys (CSUR), 2009, 41(3): 15. 被引量:1
  • 4POVINEI.LI R J, FENG X. A new temporal pattern identifi- cation method for characterization and prediction of complex time series events[J].IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2): 339-352. 被引量:1
  • 5PAPADIMITRIOU S, SUN J, FALOUTSOS C. Streaming pattern discovery in muhiple time-series [C]//Proceedings of the 31st international conference on Very large data bases. VI.DB Endowment, Trondheim: 2005: 697-708. 被引量:1
  • 6BREUNIG M M, KRIEGEI. H P, NG R T, et al. LOF: i- dentifying density-based local outliers[C]// ACM Sigmod Record. Dallas: 2000:93-104. 被引量:1
  • 7TOKUDA T, GOODRICH B, VAN MECHELEN I, et al. Visualizing distributions of covarianee matrices [R]. Universi- ty of Leuwen, Belgium and Columbia University, 2011. 被引量:1
  • 8HUANG A, WAND M P. Simple marginally noninformative prior distributions for covariance matrices [J]. Bayesian Anal- ysis, 2013, 8(2): 439-452. 被引量:1
  • 9DANIELS M J. Computing posterior distributions for eovari- ante matrices [J]. Computing Science and Statistics, 1998: 192-196. 被引量:1
  • 10BARACHANT A, BONNET S, CONGEDO M, et al. A Brain-Switch using riemannian geometry [C]//Proceedings of the 5th International BCI Conference 2011, Austria: 2011: 64-67. 被引量:1

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部