摘要
提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性.通过该方法能找到影响水稻生长状态(正常/染病)的基因.
An improved support vector machine recursive feature extraction (SVM-RFE) algorithm was used to screen the disease resistance genes. In the 20 important genes, we found that 3 of them have strong relation to the disease resistance as reported and 2 of them have relation to the stress response. It shows that this method can find out which genes could impact the rice growth status (normal/disease). It might provide a guide on finding other unknown rice disease resistance/sensibility genes in biology.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第6期1101-1104,共4页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61073075
60903097)
国家高技术研究发展计划863项目基金(批准号:2009AA02Z307)
教育部博士点基金(批准号:20090061120094)
吉林省青年基金(批准号:20090116)
关键词
回归特征消去支持向量机
基因筛选
水稻抗病
support vector machine recursive feature elimination (SVM-RFE)
gene screening
rice diseaseresistance