期刊文献+

随机编码感知的高分辨遥感光谱计算成像 被引量:6

High-resolution Computational Spectral Imaging of Remote Sensing Based on Coded Sensing
下载PDF
导出
摘要 传统遥感光谱成像系统的空间分辨率和光谱分辨率是衡量成像品质的重要指标,而它们受制于探测传感器的点阵密度,提高遥感光谱成像传感器的性能代价非常巨大。另一方面,在入射光能量一定的条件下,由于高分辨光谱的窄波段成像与低窄带辐射能量接收之间的矛盾,传统遥感光谱成像方法的空间分辨率和光谱分辨率往往难以兼得。如何利用普通探测器获得高分辨率图像是众多学者们面临的挑战。针对此问题,文章以压缩感知为理论依据,提出一种基于编码感知—特征解耦的光谱计算成像新方法。该方法无需提高传感器阵列密度,只需控制电子快门曝光和数据处理,就可以做到在保持较高光谱分辨率的情况下,大幅提升空间分辨率。 Spatial resolution and spectral resolution of the remote sensing are the key performance indexes of the remote spectral images, which are restricted to the density of the spectral detector. However, the cost of manufacturing high-density detector is huge. On the other hand, when the energy of the incident light is fixed, high spatial resolution and high spectral resolution of traditional methods usually cannot be acquired simultane- ously ,due to the contradiction between narrow band imaging and low energy received from the narrow spectral bands. How to simultaneously enhance the spatial resolution of the images from the available detectors is facing challenges. Aiming at this problem, this paper, in the principle of compressive sensing, presents a new method of calculating spectral imaging based on coded sensing and characteristics decoupling. The proposed method can greatly enhance the spatial resolution and keep high spectral resolution simultaneously without increasing density of original imaging detector.
出处 《航天返回与遥感》 2011年第5期60-66,共7页 Spacecraft Recovery & Remote Sensing
基金 国家自然科学基金(No.61003148 No.60902031 No.61070138 No.6103304) 中央高校基本科研业务费专项资金(No.JY10000902028)资助
关键词 高分辨遥感 光谱成像 计算成像 编码感知 High-resolution remote sensing Spectral imaging Computational imaging Coded sensing
  • 相关文献

参考文献14

  • 1Wilson R A .The Remote Surveillance of Forest Fires. Applied Optics[J]. 1966,5(6):899-904,. 被引量:1
  • 2Susskind J,Rosenberg J. Remote Sensing of Atmospheres and Oceans[M].New York:Academic Press, 1980. 被引量:1
  • 3Li S, Zhang X J, Zhu Y Q, et al. A Study on Remote Sensing Key Technologies of National Monitoring Resource,Ecological and Environment[J].IEEE International Geoscience and Remote Sensing Symposium,2005,3:1814-1817. 被引量:1
  • 4李志忠,杨日红,党福星,张显峰,谭炳香,赵慧洁.高光谱遥感卫星技术及其地质应用[J].地质通报,2009,28(2):270-277. 被引量:47
  • 5束炯,王强,孙娟.高光谱遥感的应用研究[J].华东师范大学学报(自然科学版),2006(4):1-10. 被引量:14
  • 6钱乐祥,泮学芹,赵芊.中国高光谱成像遥感应用研究进展[J].国土资源遥感,2004,16(2):1-6. 被引量:32
  • 7Candes E. International Congress of Mathematics[R]. 2006:1433 -1452. 被引量:1
  • 8Candes E, Romberg J, Tao T.Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J], IEEE Trans. on Information Theory, 2006,52(2):489-509. 被引量:1
  • 9Candes E, Romberg J. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [J]. Foundations of Comput, 2006,6(2):227-254. 被引量:1
  • 10Donoho D L.Compressed sensing[J].IEEE Trans. on Information Theory, 2006,52(4):1289 -1306. 被引量:1

二级参考文献135

共引文献88

同被引文献51

  • 1计振兴,孔繁锵.基于谱间线性滤波的高光谱图像压缩感知[J].光子学报,2012,41(1):82-86. 被引量:12
  • 2张琳,张黎明,李燕,刘丙萍,王晓斐,王俊德.偏最小二乘法在傅里叶变换红外光谱中的应用及进展[J].光谱学与光谱分析,2005,25(10):1610-1613. 被引量:32
  • 3张良培,沈焕锋,张洪艳,袁强强.图像超分辨率重建[M].北京:科学出版社.2012.3-11. 被引量:9
  • 4Donoho D L. Compressed Sensing[J]. IEEE Trans. Inf. Theroy, 2006, 52(4): 1289-1306. 被引量:1
  • 5Candes. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Trans. Inf. Theroy, 2006, 52(2): 489-509. 被引量:1
  • 6Neifeld M, Ke J. Optical Architecares for Compressive Imaging[J]. Appl. Opt., 2007(46): 5293-5303. 被引量:1
  • 7Duarte M, Davenport M, Takhar D, et. al. Single-pixel Imaging Via Compressive Sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91. 被引量:1
  • 8Marcia R F, Willett R M. Compressive Coded Aperture Super Resolution Image Reconstruction[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, NV: ICASSP, 2008. 被引量:1
  • 9Marcia R F, Harmany Z T, Willett R M. Compressive Coded Aperture Imaging[C]//IS&T/SPIE Electronic Imaging, San Jose, CA: SPIE, 2009. 被引量:1
  • 10Yin W, Morgan S P, Yang J, et al. Practical Compressive Sensing with Toeplitz and Circulate Matrices[C]//Visual Communications and Image Processing (VCIP), San Jose, CA: SPIE, 2010. 被引量:1

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部