期刊文献+

基于简化无迹Kalman滤波的非线性SINS初始对准 被引量:3

Nonlinear initial alignment of INS based on simplified UKF
下载PDF
导出
摘要 传统的小干扰失准角模型只适合于小失准角情况下的初始对准,对于处于大失准角下的舰船或飞机的对准必须寻求不做任何线性假设的非线性模型和非线性滤波方法。针对以上问题,建立了基于四元数的姿态误差方程,给出了基于复杂噪声模型的UKF算法,在该算法的基础上假设量测方程为线性,得出简化的UKF算法,避免了重采样、多次求解量测预测方程、计算量测预测方差等一系列繁杂过程。基于以上理论建立了适合简化UKF算法的非线性滤波模型,在大失准角、小失准角下与常规Kalman和EKF算法做对比仿真,结果表明,在小失准角下三种方法效果相当,但在大失准角下简化UKF和EKF显示出了处理非线性模型的优势,对准速度和精度都好于常规Kalman算法。由于EKF线性化造成的高阶截断误差使得对准精度略低于简化UKF。 Conventional small perturbation is only effective to initial alignment of small misalignment angle system rather than large misalignment angle system,therefore nonlinear model and nonlinear filter are introduced to solve the problem.Equations of attitude error based on quaternion and the UKF algorithm based on complicated noise model are established.Simplified UKF is introduced when measurement equation is supposed to be linear.It avoids the resample,numerous solving the measurement equations and variances.Nonlinear model suitable for simplified UKF is established,and simulations are made compared with UKF and EKF under the conditions of small and large misalignment angle.The result shows that three methods have similar effects under small misalignment angle but UKF and EKF had more advantage in dealing with nonlinear model than conventional Kalman on alignment time and accuracy.EKF is inferior to UKF because of high-order truncation errors for linearization.
作者 张涛 徐晓苏
出处 《中国惯性技术学报》 EI CSCD 北大核心 2011年第5期537-542,共6页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(60904088 60874092) 陕西省电子信息系统综合集成重点实验室基金资助(201101Y19) 东南大学微惯性仪表与先进导航技术教育部重点实验室(B类)开放基金资助项目(201008) 基本科研业务费重大引导基金(3222001102)
关键词 初始对准 非线性滤波 简化UKF EKF initial alignment nonlinear filter simplified unscented Kalman filter extended Kalman filter
  • 相关文献

参考文献9

二级参考文献46

共引文献150

同被引文献24

  • 1马闪,王新龙.天基导弹的动基座快速精确传递对准方法[J].红外与激光工程,2007,36(z2):503-507. 被引量:5
  • 2谢波,江一夫,严恭敏,陈勇.捷联惯导基于地球系的动基座间接精对准算法[J].中国惯性技术学报,2014,12(5):593-596. 被引量:9
  • 3魏宗康,夏刚.H∞控制理论在惯性技术应用中的设计方法[M].北京:中国宇航出版社,2012. 被引量:2
  • 4陆元九,等.惯性器件(下册)[M].北京:中国宇航出版社,1993. 被引量:1
  • 5周顺林.捷联惯导动态误差与旋转矢量算法[D].北京:北京航空航天大学.2006. 被引量:1
  • 6Shin E H. Estimation techniques for low-cost inertial navigation[D]. Calgary: University of Calgary, 2005. 被引量:1
  • 7Juliet S J, Uhlmann J K. Unscented filtering and nonlinear estimation [J]. Proc. of the IEEE Aerospace and Erlectronic Systems, 2004, 92(3): 401-422. 被引量:1
  • 8Savage P G. Strapdown inertial navigation integration algorithm design part 1: attitude algorithms [J]. Journal of Guidance, Control and Dynamics, 1998, 21(1): 19-28. 被引量:1
  • 9Chen Hong-mei, Cheng Xiang-hong, Dai Chen-xi. Accuracy efficiency and stability analysis of sparse-grid quadrature Kalman filter in near space hypersonic vehicles[C]//2014 Position, Location and Navigation Symposium. 2014: 27-36. 被引量:1
  • 10Chaudhuri S K, Nandi P K. Transfer alignment for space vehicles launched from a moving base[J]. Defense Science Journal, 2005, 55(3): 245-252. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部