期刊文献+

构造最优Delaunay三角剖分的拓扑优化方法 被引量:10

Topology Improvement for Constructing Optimal Delaunay Triangulation
下载PDF
导出
摘要 最优Delaunay三角剖分(ODT)是生成区域网格剖分的一种优化方法.从数值优化的角度来看,现有的ODT优化方法属于局部方法,对于任意给定初值容易陷入较差的局部极小值点,从而不能产生高质量网格.为此提出一种简单的拓扑优化方法,使得ODT方法能有效地从局部极小值点中跳出,进一步提高网格的质量.该方法只涉及到局部的边翻转操作,实现简单;而且具有显式的目标函数,能在理论上保证算法的收敛性.实验结果表明,文中算法运行速度快,不论是在拓扑连接关系还是在三角形的形状上都显著地提高了ODT方法生成的网格质量. Optimal Delaunay triangulation(ODT) is an optimization method for mesh generation.From the point of view of numerical optimization,existing ODT methods are local optimization methods,which can be easily fallen into a local minimum corresponding to a mesh with low quality.In this paper,a topology improvement method is introduced into the ODT optimization procedure,which effectively enables the ODT method to jump out from a poor local minimum and therefore improves the qualities of generated meshes.The proposed topology improvement method consists of only local operations of edge flipping,which is easy to implement.Moreover,our topology improvement method has an explicit objective function,and its convergence is guaranteed theoretically.Experimental results show that our algorithm is fast and can greatly improves the qualities of meshes generated from ODT,with respect to the regularities of the mesh and the aspect ratios of the triangles.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第12期1967-1974,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61100105 61100107) 福建省自然科学基金(2011J05007) 中央高校基本科研业务费专项资金(2011121041) 国防基础科研计划项目(B1420110155)
关键词 网格生成 最优Delaunay三角剖分 最优化 拓扑优化 mesh generation optimal Delaunay triangulation optimization topology improvement
  • 相关文献

参考文献22

  • 1Shewchuk J R. What is a good linear element?- interpolation, conditioning, and quality measures [C] // Proceedings of the llth International Meshing Roundtable. Ithaca: Springer, 2002: 115-126. 被引量:1
  • 2Frey P, George P L. Mesh generation [M]. 2nd ed. New York: Wiley, 2008. 被引量:1
  • 3关振群,宋超,顾元宪,隋晓峰.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报,2003,15(1):1-14. 被引量:171
  • 4Freitag L A, Knupp P M. Tetrahedral element shape optimization via the Jacobian determinant and condition number [C] //Proceedings of the 8th International Meshing Roundtable. Ithaca: Springer, 1999:247-258. 被引量:1
  • 5Bank R E, Smith P K. Mesh smoothing using a Posteriori error estimates [J]. SIAM Journal on Numerical Analysis, 1997, 34(3) : 979-997. 被引量:1
  • 6Alboul L, Kloosterman G, Traas C, et al. Best data- dependent triangulations [J]. Journal of Computational and Applied Mathematics, 2000, 119(1/2): 1-12. 被引量:1
  • 7LongChen Jin-chaoXu.OPTIMAL DELAUNAY TRIANGULATIONS[J].Journal of Computational Mathematics,2004,22(2):299-308. 被引量:5
  • 8Du Q, Faber V, Gunzburgcr M. Centroidal Voronoi tessellations: applications and algorithms [J]. SIAM Review, 1999, 41(4): 637-676. 被引量:1
  • 9Du Q, Gunzhurger M. Grid generation and optimization based on centroidal Voronoi tessellations [J]. Applied Mathematics and Computation, 2002, 133(2/3): 591-607. 被引量:1
  • 10Du Q, Wang D S. Anisotropic centroidal Voronoi tessellations and their applications [J]. SIAM Journal on Scientific Computing, 2005, 26(3): 737-761. 被引量:1

二级参考文献52

共引文献181

同被引文献62

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部