期刊文献+

基于小波多尺度分析的GARCH建模方法的拓展 被引量:5

Expansion of modeling method for GARCH based on wavelet multi-scale analysis
原文传递
导出
摘要 考虑到交易周期对资产价格波动特征的重要影响,将小波多尺度分析引入广义自回归条件异方差(GARCH)建模理论,提出了多尺度广义自回归条件异方差模型和多尺度增广分整广义自回归条件异方差均值模型,同时通过改进迭代的步长参数,得到了收敛速度快于BHHH算法的数值优化方法.对上证综合指数进行实证分析,结果表明:该模型克服了GARCH理论无法同时揭示蕴含在资产价格内部的多时间尺度信息的缺陷,还能够捕获到资产收益率在不同时间尺度上的局部波动特征;改进后的算法对模型参数估值效果十分明显.这类模型有助于探究资产价格伴随交易周期演化的微观动力学机制. Considering the important influence of the transaction cycle on the volatility characteristics of asset price, this paper introduced the wavelet multi-scale analysis into the GARCH theory, and proposed a multi-scale GARCH and multi-scale Augmented-FIGARCH-M model respectively. Meanwhile,we improved the iteration step length to obtain a numerical optimization algorithm which had better convergence and stability compared with the BHHH algorithm. Conclusions supported by the empirical analysis of Shanghai composite index are: The models overcome the shortcomings of traditional GARCH theory in discovering the information of multi-time scales contained in the price, and capture the volatility characteristics of the return in different time scales; It is obviously effective to use the improved algorithm to estimate the models parameter. The above models may help to explore the micro dynamic mechanism of asset price with the transaction cycle evolution.
作者 彭选华 傅强
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第11期2060-2069,共10页 Systems Engineering-Theory & Practice
基金 高等学校博士学科点专项科研基金(20100191110033) 国家自然科学基金(70501015)
关键词 GARCH 增广FIGARCH—M 多尺度分析 最大重复离散小波变换 GARCH augmented FIGARCH-M nmlti-scale analysis MODWT
  • 相关文献

参考文献26

  • 1Dacorogna M M, Gencay R, Muller U, et al. An Introduction to High-Frequency Finance[M]. New York: Academic Press, 2001. 被引量:1
  • 2Gencay R, Selcuk F, Whiteher B. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics[M]. New York: Academic Press, 2001. 被引量:1
  • 3Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation[J]. metrica, 1982, 50(4): 987-1008. 被引量:1
  • 4Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. 被引量:1
  • 5Bollerslev T, Wooldridge J M. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances[J]. Econometric Reviews, 1992, 11(2): 143-172. 被引量:1
  • 6Poterba J M, Summers L H. The persistence of volatility and stock market fluctuations[J]. The American Economic Review, 1986, 76(5): 1142-1151. 被引量:1
  • 7Dnan a. Augmented GARCH(p, q) process and its diffusion limit[J]. Journal of Econometrics, 1997, 79(1): 97-127. 被引量:1
  • 8张世英, 樊智..协整理论与波动模型 金融时间序列分析及应用[M],2004.
  • 9Bauwens L, Laurent S, Rombouts J V K. Multivariate GARCH models: A survey[J]. Journal of Applied Econo- metrics, 2006, 21(1): 79-109. 被引量:1
  • 10Lindsay R W, Percival D B, Rothrock D A. The discrete wavelet transform and the scale analysis of the surface properties of sea ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34:771-787. 被引量:1

二级参考文献65

共引文献61

同被引文献41

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部