期刊文献+

基于卷积神经网络的多字体字符识别 被引量:4

Recognition of multi-fontstyle characters based on convolutional neural network
下载PDF
导出
摘要 采用随机对角Levenberg-Marquardt算法有效改进了Simard卷积网络的收敛速度,分析了样本类别数、全局学习率对网络收敛速度的影响,并成功地把Simard网络推广到对百度验证码等多字体小字符集的识别,达到98.4%的单字符识别率和93.5%的整体识别率.实验表明:改进后的Simard网络具有前期预处理少、泛化能力强、收敛速度较快的优点,可以胜任多字体小字符集的识别工作. By using the stochastic diagonal Levenberg-Marquardt method into convolutional network presented by Simard,it was analysed the relations between sample class number,global learning rate and network′s convergence speed.Simard network was then extended to multi-fontstyle little character set such as Baidu CAPTCHA.A recognition rate 98.4% in single Baidu CAPTCHA character,and 93.5% as whole was reached.Experimental results confirmed that Simard network could be used in recogniton of mutli-fontstyle little character set.
作者 吕刚
出处 《浙江师范大学学报(自然科学版)》 CAS 2011年第4期425-428,共4页 Journal of Zhejiang Normal University:Natural Sciences
关键词 卷积神经网络 反向传播 共享权值 字符识别 验证码 CNN BP weight sharing character recognition CAPTCHA
  • 相关文献

参考文献5

  • 1Lecun Y. Generalization and network design strategies [ R ]. Pfeifer:Connectionist Research Group, 1989. 被引量:1
  • 2Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis [ C ]//Proc of the Sev- enth International Conference on Document Analysis and Recognition. Washington:IEEE,2003:958-962. 被引量:1
  • 3中国石油勘探与生产分公司.中国中西部前陆盆冲断带油气勘探文集[M].北京:石油工业出版社,2002.. 被引量:2
  • 4Jarrett K, Kavukcuoglu K, Ranzato M A, et al. What is the best Multi-Stage architecture for object recognition? [ C ]//Proc of ICCV. Kyoto: IEEE ,2009:2146-2153. 被引量:1
  • 5Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[ J]. Proc of the IEEE, 1998,86 (11 ) :2278-2324. 被引量:1

共引文献1

同被引文献30

  • 1宋宁.壮医目诊诊断慢性胃炎350例观察[J].云南中医学院学报,2006,29(S1):92-93. 被引量:11
  • 2PHAM D V. Online handwriting recognition using multi convo.lution neural networks [M]. Berlin Heidelberg: Springer,2012:310.319. 被引量:1
  • 3LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient. basedlearning applied to document recognition [C]// Proceeding ofIEEE. USA:IEEE,1998:2278.2324. 被引量:1
  • 4SIMARD P Y,STEINKRAUS Dave,PLATT John. Best practicesfor convolutional neural networks applied to visual documentanalysis [C]// International Conference on Document Analysisand Recognition(ICDAR). Los Alamitos:IEEE Computer So.ciety,2003:958.962. 被引量:1
  • 5SERMANET P,CHINTALA S,LECUN Y. Convolutional neu.ral networks applied to house numbers digit classification [C]//International Conference on Pattern Recognition. [S.l.]:IEEE,2012:3288.3291. 被引量:1
  • 6LECUN Y,BOTTOU L,ORR G B,et al. Efficient BackPropin neural networks: tricks of the trade, LNCS [M]. Heidel.berg:Springer,1998,1524:9.50. 被引量:1
  • 7Zouxy.Convolutional Neural Networks卷积神经网络[EB/OL].http://blog.csdn.net/zouxy09/article/details/8781543,2013-04-10/2014-09-20. 被引量:1
  • 8李珪,黄莉.高血压病在壮医目诊的征象观察[J].中国民族医药杂志,2007,13(4):65-65. 被引量:10
  • 9ZEILER M D,FERGUS R. Visualizing and understanding convolu- tional neural networks [J]. Arxiv Preprint Arxiv, 2013 (24): 818- 833. 被引量:1
  • 10LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11) :2278-2324. 被引量:1

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部