期刊文献+

各向异性非均匀介质中静态平面温度场问题及二类反平面问题

PROBLEMS OF STATIC PLANE TEMPERATURE FIELD AND ANTI-PLANE STRESS FIELD WITH ANISOTROPIC INHOMOGENEOUS MEDIUM
下载PDF
导出
摘要 各向异性非均匀介质中静态平面温度场问题与反平面应变、应力场问题近年来曾被许多作者研究过。在文献[1]中,David.L. Clements and C.Rogers在特殊情况下应用边界元方法得到了通解所满足的边界积分方程。本文将这二个问题化到广义解析函数的边值问题,并且在文献[2]的基础上,提出了各向异性非均匀弹性介质中静态平面温度场问题与反平面应变、应力场问题的应力边值问题和位移边值问题的一种计算方法。采用这种方法,容易得到这二个边值问题的数值结果。最后,本文对具体例子进行讨论并且给出了该问题的数值结果。 The problems of the static plane temperature field and anti—plane stressfield with anisotropic inhomogeneous medium have been studied by many authorsin recent years. For example, the solution of a kind of boundary value problemson the anisotropic inhomogeneous thermostatics and elastostatics is obtainedin terms of a boundary integral equation (David. L. Clements and C. Ro-gers [1]). But the general results of boundary value problems of the two pro-blems have not been obtained so for. In this paper, we have used the methodpresented in the paper [2] and the generalized analytic function theory tostudy above problems In this paper, we have obtained the computing method of static planetemperature fieldt and anti-plane stress field with anisotropic inhomogeneousmedium. Finally, we have discussed a concrete problem in detail and calculatedist numerical results.
作者 吴赣昌
出处 《交通科学与工程》 1990年第1期1-8,共8页 Journal of Transport Science and Engineering
关键词 温度场 广义解析函数 变分与差分方法 temperature field generalized analytic function variational and difference method
  • 相关文献

参考文献2

  • 1吴赣昌.广义解析函数Riemann-Hilbert 边值问题的计算方法[J]长沙交通学院学报,1988(01). 被引量:1
  • 2(苏)穆斯海里什维里(Н.И.Мусхелишвили)著,赵惠元译..数学弹性力学的几个基本问题[M].北京:科学出版社,1958:526.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部