摘要
用H~∞控制理论设计伺服控制器,具有频谱直接定型的优点,但是经典的H~∞控制器是以最大最小原则来求解,即考虑到外部输入(包含伺服控制器所要跟踪的控制指令)为最恶劣的情况求取输出最小的控制解。工程应用中,控制指令往往不是最恶劣的输入,若将控制指令建模,将不确定的控制指令变为确定性输入,能改善H~∞控制器的性能指标。由于控制指令难以固定模型建模,本文合理假定控制指令为分段可微,对控制指令进行部分建模为积分环节,求出H~∞控制器不仅具有反馈结构,还具有指令前馈结构,并改善了跟踪性能。另外,本文以工程实例,讨论如何应用输出加权阵的选取来对系统进行频谱定型,以及装置不确定性的测量等工程设计中的技术关键,这些都具有一定参考价值。
Though the servo controller designed by the H∞ method can directly get the desired spectrum,the H- method is based on the principle of maxmum-minimum.that is,the optimal controller is solved in the case of the worst external inputs, including command signals. In most applications,command signals are not the worst inputs that servomecha-nism want to track,and therefore the modelling of the command signal helps to improve the performance of the controller designed by the H∞ method,which put uncertain signals into fixed models. Due to the variety of the model of the command signal,the part-modelling of the command signal, integrator, is presented in the paper with a reasonal hypothesis of the differentiable command signal,and then the H∞ solution consists of feedback and feedforward. In addition,some main procedures of the panoramic mirror system design are also discussed.
出处
《南京航空航天大学学报》
EI
CAS
CSCD
1993年第S1期39-45,共7页
Journal of Nanjing University of Aeronautics & Astronautics
关键词
伺服系统
鲁棒控制
周视镜
H~∞理论
全状态反馈
servo systems,robust control,panoramic mirror,H∞ theory,full state feedback