摘要
X是Banach空间,KX是一个锥,intK≠φ;K<sub>R</sub>={x∈K:0≤ⅡxⅡ【R},K<sub>r,R</sub>={x∈K:r【ⅡxⅡ【R}(0【r【R).设T:K<sub>R</sub>→2<sup>K</sup>是k-集压缩(0≤k【1)满足条件:ⅡφⅡ≥ⅡxⅡ,v∈T(x),x∈(?)K<sub>r</sub>,则存在u<sub>0</sub>∈K<sub>r,R</sub>使得d(u<sub>0</sub>,T(u<sub>0</sub>)))=d(T(u<sub>0</sub>),(K)<sub>r,R</sub>)=d(T(u<sub>0</sub>),(K)<sub>R</sub>).作为此结果的应用,给出一个新的不动点定理.
In this paper a new approximation theorem for a h-set-contraction mappings defined by an annulus in cone isobtained.With its application a new fixed point is derived.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
1993年第6期29-33,共5页
Journal of Sichuan Normal University(Natural Science)
关键词
不动点
锥
逼近定理
fixed points
cone
approximation theorem