摘要
Two-phase, immiscible, incompressible flow in porous media is governed by a system of nonlinear partial differential equations. In most practical applications convection physically dominates diffusion, and the object of this paper is to develop a finite difference method combined with the method of characteristics and the lumped mass method to treat the parabolic equation of the differential system. This method is shown satisfy the maximum principle and its error analysis is presented.
Two-phase, immiscible, incompressible flaw in porous media is governed by a system of nonlinear partial differential equations. In most practical applications convection physically dominates diffusion, and the object of this paper is to develop a finite difference method combined with the method of characteristics and the lumped mass method to treat the parabolic equation of the differential system. This method is shown satisfy the maximum principle and its error analysis is presented.
基金
This work is supported by National Educational Committce Doctoral Point foundation.