摘要
Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.
Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.
基金
the National Natural Science Foundation of China.