摘要
The present paper finds out that the geometric entity which characterizes the best Lipschitz constants for the Bezier nets and Bernstein polynomials over a simplex sigma is an angle Phi determined by sigma, and proves that (1) if f(x) is Lipschitz continuous over sigma, i.e., f(x) is an element of Lip(A)(alpha,sigma), then both the n-th Bezier net <(f)over cap (n)> and the n-th Bernstein polynomial B-n(f;x) corresponding to f(x) belong to Lip(B)(alpha,sigma) , where B = Asec(alpha)Phi; and (2) if n-th Bezier net <(f)over cap (n)> is an element of Lip(A)(alpha,sigma), then the elevation Bezier net <E(f)over cap (n)> and the corresponding Bernstein polynomial. B-n(f,;x) also belong to Lip(A)(alpha,sigma). Furthermore, the constant B = Asec(alpha)Phi, in case (1) is best in some sense.
The present paper finds out that the geometric entity which characterizes the best Lipschitz constants for the Bezier nets and Bernstein polynomials over a simplex sigma is an angle Phi determined by sigma, and proves that (1) if f(x) is Lipschitz continuous over sigma, i.e., f(x) is an element of Lip(A)(alpha,sigma), then both the n-th Bezier net <(f)over cap (n)> and the n-th Bernstein polynomial B-n(f;x) corresponding to f(x) belong to Lip(B)(alpha,sigma) , where B = Asec(alpha)Phi; and (2) if n-th Bezier net <(f)over cap (n)> is an element of Lip(A)(alpha,sigma), then the elevation Bezier net <E(f)over cap (n)> and the corresponding Bernstein polynomial. B-n(f,;x) also belong to Lip(A)(alpha,sigma). Furthermore, the constant B = Asec(alpha)Phi, in case (1) is best in some sense.