摘要
Petroleum science has made remarkable progress in organic geochcmistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the knowledge of its evolutionary history and especially the numerical computation of fluid flow and the history of its changes under heat is vital. The mathematical model can be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems. This thesis, from actual conditions such as the effect of fluid compressibility and the three-dimensional characteristic of large-scale science-engineering computation, we put forward a kind of characteristic finite element alternating-direction schemes and obtain optimal order estimates in L^2 norm for the error in the approximate assumption.
Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the knowledge of its evolutionary history and especially the numerical computation of fluid flow and the history of its changes under heat is vital. The mathematical model can be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems. This thesis, from actual conditions such as the effect of fluid compressibility and the three-dimensional characteristic of large-scale science-engineering computation, we put forward a kind of characteristic finite element alternating-direction schemes and obtain optimal order estimates in L^2 norm for the error in the approximate assumption.
基金
Project supported by the National Science Foundation,the National Scaling Program
the Doctoral Foundation of the National Education Commission