摘要
The photosynthetic response of 12-year old Pinus sylvestriformis to elevated CO2 and its influential factors were tested and analyzed in the forest region of Changbai Mountain in 1999. Thees grown at the natural condition were controlled at three levels of CO2 concentration (350μL·L-1, 500 μL·L -1 and 700μL·L-1) by CO2 rich settlement designed by us. Net photosynthetic rates (NPR), temperature, relative humidity, stomatal conduc- tance, intercellular CO2 concentration and photosynthetic active radiation (PAR) were measured at 6:00, 8:00, 10:00, 14:00, 16:00 and 18:00 hours a day. Experimental results showed that the NPR of Pinus sylvestriformis increased by 32.6% and 123.0% at 500 μL·L-1 and 700 μL·L-1 CO2 concentration respectively, compared to am- bient atmospheric CO2 concentration (350 μL·L-1). The relations betWeen NPR and influential factors, including temperature, relative humidity, intercellular CO2 concentration and photosynthetic active radiation, were analyzed respectively by regression analysis at different CO2 concentrations.
The photosynthetic response of 12-year oldPinus sylvestriformis to elevated CO2 and its influential factors were tested and analyzed in the forest region of Changbai Mountain in 1999. Trees grown at the natural condition were controlled at three levels of CO2 concentration (350 μL·L?1, 500 μL·L?1 and 700 μL·L?1) by CO2 rich settlement designed by us. Net photosynthetic rates (NPR), temperature, relative humidity, stomatal conductance, intercellular CO2 concentration and photosynthetic active radiation (PAR) were measured at 6:00, 8:00, 10:00, 14:00, 16:00 and 18:00 hours a day. Experimental results showed that the NPR ofPinus sylvestriformis increased by 32.6% and 123.0% at 500 μL·L?1 and 700 μL·L?1 CO2 concentration respectively, compared to ambient atmospheric CO2 concentration (350 μL·L?1). The relations between NPR and influential factors, including temperature, relative humidity, intercellular CO2 concentration and photosynthetic active radiation, were analyzed respectively by regression analysis at different CO2 concentrations.
基金
Chinese Academy of Sciences