期刊文献+

BP算法的改进及其在Matlab上的实现 被引量:9

Improvement of BP Learning Algorithm in Matlab
下载PDF
导出
摘要 针对BP算法这种当前前馈神经网络训练中应用最多的算法,在介绍BP神经网络的基础上,对标准的BP网络训练算法存在的收敛速度慢、易陷入局部极值的严重缺点,提出了几种学习算法上的改进;进而介绍了改进蹬算法在Matlab神经网络工具箱中的函数实现。最后应用实例利用Matlab神经网络工具箱对标准BP算法及改进的算法进行语言编程、仿真。仿真结果显示,改进后的算法在极值、收敛速度上得到了很大的改善。 BP algorithm is the most popular training algorithm for feed forward neural network learning. On account of the limitation of the standard BP algorithm, such as slow convergence and local minima, several improved algorithms are given and realized through the neural network toolbox in Matlab. Utilizing the neural network toolbox and programming, an example is given to show the differences between the standard BP algorithm and the improved algorithm using Matlab. The results show that the improved algorithm can improve in extremum and the speed of convergence.
出处 《控制工程》 CSCD 2005年第S1期100-102,共3页 Control Engineering of China
基金 浙江省科技计划资助项目(2004C31013)
关键词 神经网络 BP算法 改进算法 BP algorithm neural network improved algorithm
  • 相关文献

参考文献2

二级参考文献24

  • 1马克.选煤厂机电设备和技术的管理与创新[J].中国石油和化工标准与质量,2020,0(1):76-77. 被引量:8
  • 2王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999.. 被引量:51
  • 3Randall S Sexton, Robert E Dosey, John D Johnson. Toward global optimization of network: A comparison of the genetic algorithm and back propagation. Decision Support Systems, 1998. 22:171 - 185. 被引量:1
  • 4Randall S Sexton, Jatinder N D Gupta.Comparative evaluation of genetic algorithm and back propagation for training neural networks. Information Sciences , 2000. 129:45 - 59. 被引量:1
  • 5Randall S Sexton, Robert E Dorsey, John D Johnson.Optimization of neural network: A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research, 1999. 114:589 - 601. 被引量:1
  • 6M Mandischer. A comparison of evolution strategies and back propagation for neural network training. Neurocomputing, 2002. 42:87 - 117. 被引量:1
  • 7Randall S Sexton, Baharam Alidaee, Robert E Dorsey,John D Johnson. Global optimization for artificial neural networks: A tabu search application. European Journal of Operation Reseach, 1998. 106: 570-584. 被引量:1
  • 8阎平凡 张长水.人工神经网络与枇拟进化计算[M].清华大学出版社,2001.10-39. 被引量:1
  • 9阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001.. 被引量:38
  • 10李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535

共引文献21

同被引文献59

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部