期刊文献+

PSO和GA的对比及其混合算法的研究进展 被引量:24

Comparison Between Particle Swarm Optimization and Genetic Algorithm and Development of the Hybrid Approach
下载PDF
导出
摘要 系统地介绍了微粒群优化算法(PSO)和遗传算法(GA)的基本原理、发展和应用的状况,比较了两者的原理特点,列举了各种微粒群优化算法和遗传算法的改进算法。介绍和总结目前出现的两种算法思想结合的局部混合与全局混合两种方式,并用图表给出了说明。分析了两种混合方式的局限性,提出对具体问题找出计算速度和计算精度的平衡点来改进算法。最后做了总结和展望,指出微粒群算法的应用需进一步拓展,和其他算法结合是提高其性能的主要方向。 The basic theories,development and applications of particle swarm optimization and genetic algorithm are introduced. Some models of improved PSO algorithms are outlined. Characteristics of PSO and GA are compared. Two methods of hybrid of PSO and GA at present are summarized: global combination of the two algorithms or partial combination are illustrated with flowchart. Limitation of the two hybrid methods is analysed. It is pointed out that hybrid algorithms can be improved with a balance between speed and accuracy of computation. Finally,it is pointed out application of PSO needs to be extended, and hybrid methods with other algorithms is seen as a good way to improve PSO algorithm.
出处 《控制工程》 CSCD 2005年第S2期93-96,共4页 Control Engineering of China
关键词 微粒群优化算法 遗传算法 进化算法 混合 群智能 particle swarm optimization genetic algorithm evolutionary algorithm hybrid swarm intelligence
  • 相关文献

参考文献3

二级参考文献13

  • 1王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 2Ching Changwong,Fuzzy Sets Systems,1997年,88卷,23页 被引量:1
  • 3王立新,自适应模糊系统与控制.设计与稳定性分析,1995年 被引量:1
  • 4康立山.非数值并行算法(第1册)--模拟退火算法[M].北京:科学出版社,1997.. 被引量:3
  • 5Walters D C, Sheble G B. Genetic algorithm solution of economic dispatch with valve point loading[J]. IEEE Trans on Power Systems,1993, 8(3): 1325-1332. 被引量:1
  • 6Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch[J]. IEEE Trans on Evolutionary Computation, 2003, 7(1): 83-94. 被引量:1
  • 7Damousis I G, Bakirtzis A G, Dokopoulos P S. Network-constrained economic dispatch using real-coded genetic algorithm[J]. IEEE Trans on Power Systems, 2003, 18(1): 198-205. 被引量:1
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proceeding of the 1995 IEEE International Conference on Neural Network[C],Perth, Australia, 1995: 1942-1948. 被引量:1
  • 9Kennedy J, Eberhart R C. A new optimizer using particle swarm [A]. Proceeding of the Sixth International Symposium on Micro Machine and Human Science[C], Nagoya, Japan, 1995: 39-43. 被引量:1
  • 10Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1

共引文献143

同被引文献76

引证文献24

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部