期刊文献+

一种基于FP-tree的最大频繁项目集挖掘算法

An algorithm for mining maximum frequent itemsets based on FP-tree
原文传递
导出
摘要 挖掘最大频繁项目集是许多数据挖掘中的关键问题.为克服早期基于Apriori的最大频繁项目集算法中的缺点,相继有多种挖掘最大频繁项目集方法被提出.其中对基于FP-tree的最大频繁项目集挖掘算法比较多,但对FP-tree中的结点的频度计数关注的很少.通过对FP-tree结构进行了仔细分析后,在FP-tree中结点的频度计数和集合理论的基础上,提出了一种新的最大频繁项目集挖掘算法USDMFIA(using set to discover maximum frequent itemsets algorithm).通过分析比较,显示此算法是有效的. Mining maximum frequent itemsets is a key problem in many data mining applications. In order to overcome the drawbacks in previous maximum itemsets algorithm based on Apriori, a lot of approaches for mining maximum frequent itemsets were proposed, which include much more algorithm for mining maximum frequent itemsets based on FP-Tree, but few focus on frequent count of node in FP-Tree. A algorithm——USDMFIA (using set to mining maximum frequent itemsets algorithm )for mining maximum frequent itemsets based on frequent count of node and set theory through analyzing FP-Tree structure is proposed. A comparative and analysis to previous methods show that the algorithm is efficient.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第S2期97-101,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省高校教学 科研带头人基金 云南省院省校合作项目(2004YX42)
关键词 数据挖掘 最大频繁项目集 频繁模式树 项目集合 交集 data mining maximum frequent itemsets FP-tree itemsets intersection sets
  • 相关文献

参考文献3

二级参考文献25

  • 1宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:. 被引量:1
  • 2Han J.W.,Kamber M..Data Mining:Concepts and Techniques.Beijing:Higher Education Press,2001. 被引量:1
  • 3Agrawal R.,ImielinSki T.,Swami A..Mining association rules between sets of items in large database.In:Proceedings of the ACM SIGMOD International Conference on Managementof Data,Washington,DC,1993,2:207-216. 被引量:1
  • 4Srikant A.R..Fast algorithms for mining association rules.In:Proceedings of the 20th International Conference Very Large Data Bases(VLDB’94).Santiago,Chile,1994,487-499. 被引量:1
  • 5Han J.W.,Pei J.,Yin Y..Mining partial periodicity using frequent pattern tree.Simon Fraser University:Technical Report TR-99-10,1999. 被引量:1
  • 6Cheung D.,Han J.W.,Ng V.,Wong V..Maintenance of discovered association rules in large databases:An incremental updating technique.In:Proceedings of the 12th International Conference on Data Engineering(ICDE),New Orleans,Louisiana.1996.106-114. 被引量:1
  • 7Cheung D.LEE S.Kao B.A general incremental technique for maintaining discovered association rules.In:Proceedings of the 5th International Conference on Database Systems for Advanced Applications(DASFAA),Melbourne,Australia,World Scientific,1997,185-194. 被引量:1
  • 8Han J.W.,Pei J.,Yin Y..Mining frequent patterns without candidate generation.In:Proceedings of the 2000 ACM-SIG-MOD International Conference on Management of Data,Dal1as,2000,1-12. 被引量:1
  • 9Bayardo R.J..Efficiently mining long patterns from databases.In:Haas L.M.,Tiwary A.eds..Proceedings of the ACMSIGMOD International Conference on Management of Data.New York:ACM Press,1998,85-93. 被引量:1
  • 10Lin D.,Kedem Z.M..Pincer-Search:A new algorithm for discovering the maximum frequent set.In:Scheck H.J.,Saltot F.,Ramos I.et al,eds..Proceedings of the 6th European Conference on Extending Database Technology,Heidelberg:Snringer-Verlag.199R.105-119. 被引量:1

共引文献231

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部