期刊文献+

RBF神经网络的行车路径代价函数建模 被引量:5

Radial basis function neural network modeling of the traffic path cost function
下载PDF
导出
摘要 行车路线优化是城市智能交通系统的研究热点之一,对整个交通系统的优化起着重要作用.分析了影响行车时间的各种因素,结合图论中最短路径算法,建立了基于RBF神经网络的路径代价函数模型.基于该函数模型,可以计算出交通图中任意给定两地间的时间最优路径.将该模型应用于实际路况进行有效性验证,得到了有实用价值的结果,说明了该模型的正确性和有效性. Vehicle route optimization is one of the hot topics in research on urban intelligent transportation systems ( ITS), and it plays an important role in the optimization of the entire transportation system. This paper analyzed various lactors that attect the travel time and established a path cost tunctlon model with an radial basis lunctlon neural network, based on the shortest paths algorithms in graph theory. By this function model, the time-orientedoptimal path between any two given places on a traffic map can be calculated. The model was applied to actual traffic to validate the effectiveness, and its results are of practical value, showing the correctness and validity of themodel.
出处 《智能系统学报》 2011年第5期424-431,共8页 CAAI Transactions on Intelligent Systems
关键词 智能交通 路径代价函数 行车路线优化 RBF神经网络 图论 intelligent transportation path cost function vehicle route optimization radial basis function neural network graph theory
  • 相关文献

参考文献18

二级参考文献53

共引文献129

同被引文献49

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部