期刊文献+

非计量多维尺度分析中单调回归算法的连续性和可微性研究

Continuity and differentiability properties of monotone regression in non-metric multidimensional
下载PDF
导出
摘要 在非计量多维尺度分析中,对变量进行单调顺序转换所用的最小二乘单调回归算法是非计量多维尺度分析的核心技术。它是Kruskal(1964)提出来的,其作用就是找到一个能够和数据尽可能匹配的具有最小压力值的结构空间。用迭代法求解压力函数S(Q,A),找到压力值最小结构空间,从而完成顺序尺度的转换。残差的平方和Q是来自于Yi对Xi的单调回归,将Q看成是Yi的函数,用一个简单的公式证明梯度▽Q存在且在每个点上都连续。S具有连续性和可微性是成功求解压力函数的关键。 The technique of Least-squares monotone regression has played a central role in non-metric multidimensional scaling,and it was prosposed by Kruskal in 1964. The technique could be used to find a configuration of points which match the dissimilaritues ( data ) as well as possible. And a numerical method could be used to solve the stress function S (Q, A), and find the best-fitting configuration at which S has a minimum value, thus finished the monotone ordinral conversion of dissimilarities. Consid- er residual sum of squares Q obtained from the least-squares monotone regression of Yi on xi. Treating Q as a function of the Yi, we use a simple formula to prove that the gradient V Q exists and is continuous in every point. The continuity and differentiablity properties of S are important to solve the stress function successfully.
出处 《贵州师范大学学报(自然科学版)》 CAS 2011年第4期73-75,共3页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州省高层次科研人才特助项目成果
关键词 最小二乘单调回归 梯度 可微性 连续性 least-squares monotone regression gradient differentiability continuity
  • 相关文献

参考文献10

  • 1骆文淑,赵守盈.多维尺度法及其在心理学领域中的应用[J].中国考试,2005(4):27-30. 被引量:41
  • 2Kruskal J B. Multidimensional scaling by optimizing good- ness of fit to a nonmetrie hypothesis [ J ]. Psychometrika, 1964,29 : 1-28. 被引量:1
  • 3Kruskal J B. Nonmetric multidimensional scaling:a numer- ical method[ J ]. Psychometrika, 1964,29 : 115-129. 被引量:1
  • 4Kruskal J B. Analysis of factorial experiments by estima ting monotone transformations of the data [ J ]. Journal of the Royal Statistical Society, Series B, 1965,27:251-263. 被引量:1
  • 5Kruskal J B. Two convex counterexamples:a discontinuous envelope function and a non-differentiable nearest-point mapping[ C]. Proceedings of the American Math Society, 1969. 被引量:1
  • 6甘资先,周方俊,肖奕.多维尺度分析中的算法研究[J].清华大学学报(自然科学版),1991,31(6):20-27. 被引量:8
  • 7Kruskal J B, Carmone, Fran. kMONANOVA: A Fortran IV program for monotone analysis of variance [ J ]. Behavioral Science, 1969,14 : 165-166. 被引量:1
  • 8Kruskal J B. Monotone regression:continuity and differen- tiability properties [ J ]. Psychometrika, 1971,36 ( 1 ) : 57- 61. 被引量:1
  • 9Miles R E. The complete amalgamation into blocks, by weighted means, of a finite set of real numbers [ J ]. Bi- ometrika, 1959,45 : 317 -327. 被引量:1
  • 10Moreau Jean Jaques. Convexity and duality, in Caianisllo, E.R. ( ed ). Functional analysis and optimization [ M ]. New York : Academic Press, 1969. 被引量:1

二级参考文献2

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部